题意:给定m个病毒的DNA序列(由AGCT组成),求长度为n的不包含病毒子串的DNA序列由多少个(模1e9+7),范围m<=10,病毒长度<=10,n<2^32。
题解:如果一个点走到下一个点就构成病毒,则这条边为非法边。易知原病毒的倒数第二个字母走到最后一个字母为非法边,但是不局限于这样的非法边。因此需要AC自动机的fail指针,如果fail指向的节点有病毒标记,则将这条边也打上病毒标记。然后将边的数量累计一下记录在邻接矩阵里,将这个邻接矩阵用快速幂求n次方,第一行之和就是虚拟节点走n步走到各节点的方案数之和,即为答案。
注意到由于有很多病毒序列,实际上这个矩阵里面有很多边为0。因此加上稀疏矩阵的乘法优化+寻址优化可以快到原来的二分之一。
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> using namespace std; #define LL long long const LL mo = 100000; const int MAXS = 9999; int n, m; inline int f(char a) { if (a=='A') return 0; if (a=='T') return 1; return a=='G'? 2 : 3; } struct mat { LL a[105][105]; int n, m; }; mat res, tmp; mat operator * (mat A, mat B) { memset(tmp.a, 0, sizeof tmp.a); tmp.n = A.n, tmp.m = B.m; for (int i = 1; i<=A.n; ++i) for (int k = 1; k<=A.m; ++k) { for (int j = 1; j<=B.m; ++j) tmp.a[i][j] = (tmp.a[i][j] + A.a[i][k]*B.a[k][j]) % mo; } return tmp; } mat ksm(mat A, int k) { memset(res.a, 0, sizeof res.a); res.n = res.m = A.n; for (int i = 1; i<=res.n; ++i) res.a[i][i] = 1; for (; k; k>>=1, A = A*A) if (k&1) res = res * A; return res; } int que[MAXS]; struct Trie { int ch[MAXS][4], fail[MAXS]; bool isbug[MAXS]; int ncnt; void init() { for (int i = 0; i<4; ++i) ch[0][i] = 1; ncnt = 1; } void ins(char *s) { int p = 1; for (int i = 0, c; s[i]; ++i) { c = f(s[i]); if (!ch[p][c]) p = ch[p][c] = ++ncnt; else p = ch[p][c]; } isbug[p] = 1; } void buildac() { int l = 0, r = 0, t, i; fail[que[l] = 1] = 0; while (l <= r) { t = que[l ++]; if (isbug[fail[t]]) isbug[t] = 1; for (i = 0; i < 4; ++i) if (ch[t][i]) { fail[ch[t][i]] = ch[fail[t]][i]; que[++r] = ch[t][i]; } else ch[t][i] = ch[fail[t]][i]; } } void buildmat(mat&A) { memset(A.a, 0, sizeof A.a); A.n = A.m = ncnt; for (int i = 1; i<=A.n; ++i) for (int j = 0; j<4; ++j) if (!isbug[i] && !isbug[ch[i][j]]) A.a[i][ch[i][j]]++; } } ac; char bug[999]; mat X; int main() { scanf("%d%d", &m, &n); ac.init(); for (int i = 1; i<=m; ++i) scanf("%s", bug), ac.ins(bug); ac.buildac(); ac.buildmat(X); X = ksm(X, n); LL ans = 0; for (int i = 1; i <= X.n; ++i) ans = (ans + X.a[1][i]) % mo; cout << ans << '\n'; return 0; }