spoj694之后缀数组

SPOJ Problem Set (classical)

694. Distinct Substrings

Problem code: DISUBSTR

Given a string, we need to find the total number of its distinct substrings.

Input

T- number of test cases. T<=20;
Each test case consists of one string, whose length is <= 1000

Output

For each test case output one number saying the number of distinct substrings.

Example

Sample Input:
2
CCCCC
ABABA

Sample Output:
5
9

Explanation for the testcase with string ABABA: 
len=1 : A,B
len=2 : AB,BA
len=3 : ABA,BAB
len=4 : ABAB,BABA
len=5 : ABABA
Thus, total number of distinct substrings is 9.


#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std;

const int MAX=1000+10;
int *rank,r[MAX],sa[MAX],height[MAX];
int wa[MAX],wb[MAX],wm[MAX];
char s[MAX];

bool cmp(int *r,int a,int b,int l){
	return r[a] == r[b] && r[a+l] == r[b+l];
}

void makesa(int *r,int *sa,int n,int m){
	int *x=wa,*y=wb,*t;
	for(int i=0;i<m;++i)wm[i]=0;
	for(int i=0;i<n;++i)wm[x[i]=r[i]]++;
	for(int i=1;i<m;++i)wm[i]+=wm[i-1];
	for(int i=n-1;i>=0;--i)sa[--wm[x[i]]]=i;
	for(int i=0,j=1,p=0;p<n;j=j*2,m=p){
		for(p=0,i=n-j;i<n;++i)y[p++]=i;
		for(i=0;i<n;++i)if(sa[i]>=j)y[p++]=sa[i]-j;
		for(i=0;i<m;++i)wm[i]=0;
		for(i=0;i<n;++i)wm[x[y[i]]]++;
		for(i=1;i<m;++i)wm[i]+=wm[i-1];
		for(i=n-1;i>=0;--i)sa[--wm[x[y[i]]]]=y[i];
		for(t=x,x=y,y=t,i=p=1,x[sa[0]]=0;i<n;++i){
			x[sa[i]]=cmp(y,sa[i],sa[i-1],j)?p-1:p++;
		}
	}
	rank=x;
}

void calheight(int *r,int *sa,int n){
	for(int i=0,j=0,k=0;i<n;height[rank[i++]]=k){
		for(k?--k:0,j=sa[rank[i]-1];r[i+k] == r[j+k];++k);
	}
}

int main(){
	int t;
	cin>>t;
	while(t--){
		cin>>s;
		int len=0;
		for(len=0;s[len] != '\0';++len)r[len]=s[len];
		r[len]=0;
		makesa(r,sa,len+1,256);
		calheight(r,sa,len+1);
		int sum=0;
		for(int i=1;i<=len;++i){
			sum+=len-sa[i]-height[i];
		}
		cout<<sum<<endl;
	}
	return 0;
}


你可能感兴趣的:(spoj694之后缀数组)