动规-字符串编辑距离

 要想把字符串S1变成S2,可以经过若干次下列原子操作:

1.删除一个字符

2.增加一个字符

3.更改一个字符

字符串S1和S2的编辑距离定义为从S1变成S2所需要原子操作的最少次数。

 

 

解法跟上面的最长公共子序列十分相似,都是动态规划,把一个问题转换为若干个规模更小的子问题,并且都借助于一个二维矩阵来实现计算。

约定:字符串S去掉最后一个字符T后为S',T1和T2分别是S1和S2的最后一个字符。

则dist(S1,S2)是下列4个值的最小者:

1.dist(S1',S2')--当T1==T2

2.1+dist(S1',S2)--当T1!=T2,并且删除S1的最后一个字符T1

3.1+dist(S1,S2')--当T1!=T2,并且在S1后面增加一个字符T2

4.1+dist(S1',S2')--当T1!=T2,并且把S1的最的一个字符T1改成T2

 

把问题转换为二维矩阵:

arr[i][j]表示S1.sub(0,i)和S2.sub(0,j)的编辑距离,则

arr[i][j]=min{

1+arr[i][j-1],

1+arr[i-1][j],

1+arr[i-1][j-1]  (当S1[i]!=S2[j]),

arr[i-1][j-1]      (当S1[i]==S2[j])

    }

边界情况:arr[0][j]=j,arr[i][0]=i

 

你可能感兴趣的:(动规-字符串编辑距离)