找出有向图中有没有环

这里用邻接表和一个入度数组实现

topo时候保持一个栈 把入度为0的点压入栈中

每次将栈中元素出栈 同时减去这个点邻接点的入度 

如果临界点的入度为0 则入栈

栈的循环直到栈为空


然后检查是否有环 扫面入度数组 如果有不为0的元素 则存在环


解释可能有不清楚的地方 以后有时间重新写过 睡觉去了!


#include <iostream>
#include <stack>
#include <hash_set>

#define N 26

struct node
{
	int adjVex;
	node* next;
}adj[N];

int inDegree[N];
std::hash_set<int> map;

void init()
{
	memset(inDegree, 0, sizeof(inDegree));
	for(int i = 0; i < N; i++)
	{
		adj[i].adjVex = i;
		adj[i].next = NULL;
	}
};

void create(int u, int v)
{
	if(map.find(u) == map.end())
		map.insert(u);
	if(map.find(v) == map.end())
		map.insert(v);

	node* n = new node();
	n->adjVex = v;
	n->next = adj[u].next;
	adj[u].next = n;
	inDegree[v]++;
};

void printAdjList()
{
	std::cout << "Adj list:\n";
	for(int i = 0; i < N; i++)
	{
		char curElem = adj[i].adjVex + 'A';
		node* n = adj[i].next;

		bool printBreak = false;
		if(n)
		{
			printBreak = true;
			std::cout << curElem << " ";
		}

		while(n)
		{
			char cur = n->adjVex + 'A';
			std::cout << cur << " ";
			n = n->next;
		}
		if(printBreak)
			std::cout << "\n";
	}
};

bool topo()
{
	std::stack<int> st;
	//int cnt = 0;
	for(int i = 0; i < N; i++)
	{
		if(inDegree[i] == 0 && map.find(i) != map.end())
			st.push(i);
	}

	int top;
	std::cout << "Topo result:\n";
	while(!st.empty())
	{
		top = st.top();
		st.pop();
		char cur = top + 'A';
		std::cout << cur << " ";
		//cnt++;
		
		node* n = adj[top].next;
		while(n)
		{
			int k = n->adjVex;
			inDegree[k]--;
			if(inDegree[k] == 0)
				st.push(k);
			n = n->next;
		}
	}
	std::cout << "\n";

	for(int i = 0; i < N; i++)
	{
		if(inDegree[i] != 0)
			return false;
	}

	return true;
};

int main()
{
	int total;
	std::cout << "Put the total of the pairs: ";
	std::cin >> total;

	init();
	char u, v;
	std::cout << "-u- -v-\n";
	while(total--)
	{
		std::cin >> u >> v;
		create(u - 'A', v - 'A');
	}

	printAdjList();

	int canTopo = topo();

	if(!canTopo)
		std::cout << "This graph could not be topoed!\n"; 

	return 0;

}


你可能感兴趣的:(struct,list,null,Graph)