- 音频单声道跟立体声道的区别
张海森_168820
音视频
音频单声道跟立体声道的区别摘自chatgpt单声道(Mono)和立体声(Stereo)的区别,主要在于声道数与空间感的不同:1.定义对比:项目单声道(Mono)立体声(Stereo)声道数1个2个(左声道+右声道)声音来源所有声音都从一个声道发出声音分布在两个声道,模拟空间感空间效果无空间感有方向、空间定位感(左右差异)文件大小相对较小文件更大(多一倍音频数据)常见应用电话、对讲机、语音识别等音乐
- 智能合约安全审计平台——以太坊虚拟机安全沙箱
闲人编程
智能合约安全区块链安全沙箱隔离层以太坊EVM
目录以太坊虚拟机安全沙箱——理论、设计与实战1.引言2.理论背景与安全原理2.1以太坊虚拟机(EVM)概述2.2安全沙箱的基本概念2.3安全证明与形式化验证3.系统架构与模块设计3.1模块功能说明3.2模块之间的数据流与安全性4.安全性与密码学考量4.1密码学保障在沙箱中的应用4.2防御策略与安全规范5.实战演示与GUI设计5.1设计目标5.2GUI模块设计5.3数学公式与数据展示6.沙箱模拟运行
- 牛客AI面试「情景模拟」独家首发,将能力验证从“说”变为“做”
牛客企业服务
人工智能面试职场和发展
今日,牛客重磅推出AI面试「情景模拟」功能——Roleplay,首次在AI面试中实现真实职场场景还原。通过动态角色扮演+实时压力测试,让候选人“现场应战”,直接暴露真实能力边界,更好预测员工实际工作表现。一、高效筛选“能做”而非“知道”的人,避免自我报告偏差传统面试依赖候选人“自述经历”,易包装虚构,可能筛选出“知道正确回答”的人(如销售流程),难以验证真实执行能力。牛客AI面试情景模拟逼近真实职
- 音频采样数据格式
melonbo
百问-音视频音视频
音频信号在模拟到数字转换时,会涉及到多个关键参数,如采样率、位深度、通道数等。下面是常见的音频采样数据格式及其相关概念:1.采样率(SampleRate)采样率指的是每秒钟对音频信号进行采样的次数,单位为赫兹(Hz)。常见的值如下:44.1kHz:常用于音频CD和大多数音乐文件格式(如WAV、MP3)。48kHz:常用于专业音频录制、电影和视频音频处理。96kHz、192kHz:常用于高保真音频(
- 什么是Alpha测试和Beta测试?
海姐软件测试
软件测试基础概念-面试通关面试
1.本质差异(测试阶段定位)Alpha测试≈可控环境下的"压力体检"在受控实验室环境中执行(通常是开发方场地),我们曾对某银行系统进行Alpha测试时,用Mock服务模拟了2000个ATM终端同时吐钞的场景。Beta测试≈真实世界的"路测实验"交给真实用户在实际环境中使用,比如某知名手游的Beta测试期间,我们发现了iOS14.3特定版本下的GPU内存泄漏问题,这种问题在模拟器上根本无法复现。2.
- iOS14.6真机调试实战教程.zip
Neo-ke
本文还有配套的精品资源,点击获取简介:iOS开发中真机调试是关键步骤,确保应用在真实设备上的兼容性和性能。本文深入探讨iOS14.6真机调试包的使用,介绍必要的调试工具和步骤。真机调试相较于模拟器调试更能贴近实际用户体验,涉及硬件特性、网络条件和电池状态等因素,为解决特定设备或系统版本问题提供关键帮助。开发者需理解安装描述文件、连接设备、配置Xcode和运行应用的具体操作,以在iOS14.6版本上
- frp内网穿透及sshuttle
段帅龙呀
Linuxlinux
frpssh配合sshuttle可以真实模拟,直接访问内网vmwareip地址FRP内网穿透一、所需环境:服务端:1台有公网ip并且安装有docker的服务器、域名客户端:有1台或者多台安装docker的服务器如果有域名需要添加对应的解析有防火墙或者安全组需要开放对应端口,frps监听7000,frpsdashboard监听7500,client本次示例是6000,根据实际情况修改本篇笔记均使用u
- 全球人工智能与大模型发展全景:技术历程、产品概览与未来趋势
软件职业规划
人工智能搜索引擎
一、人工智能的发展历程(一)萌芽期(1950s-1980s)1956年:人工智能的诞生人工智能(AI)的概念在1956年的达特茅斯会议上被正式提出。那是一个充满梦想和探索的时代,一群年轻的科学家,包括约翰·麦卡锡(JohnMcCarthy)、马文·明斯基(MarvinMinsky)和克劳德·香农(ClaudeShannon)等,齐聚达特茅斯学院,共同探讨一个前所未有的课题:如何让机器模拟人类智能。
- 分布式学习
嘉陵妹妹
分布式学习
1.列举三个非冯·诺依曼计算结构非冯结构是指不遵循传统冯·诺依曼体系的计算架构,包括:数据流结构(DataflowArchitecture):指令执行取决于数据的可用性而不是程序计数器。神经网络结构(NeuralNetworkArchitecture):模拟生物神经元连接,用于人工智能。量子计算结构(QuantumComputingArchitecture):利用量子比特和量子叠加原理进行计算。2
- Python 图片爬虫实战:从代码解析到应用技巧
维他奶糖61
python爬虫开发语言
在数字时代,图片资源丰富多样,通过爬虫技术批量获取心仪的图片成为不少人的需求。本文将以爬取彼岸桌面壁纸网4K美女壁纸为例,深入解析Python图片爬虫代码,分享实用技巧,带你轻松掌握图片爬虫技术。一、爬虫实现思路爬虫的核心是模拟浏览器访问网页,解析页面内容,提取所需信息。本次爬虫的流程如下:构建目标网页URL列表,循环访问各页面;发送HTTP请求获取页面内容,解析HTML文档;定位图片元素,提取图
- CARLsim开源程序 是一个高效、易用、GPU 加速的软件框架,用于模拟具有高度生物细节的大规模脉冲神经网络 (SNN) 模型。
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载CARLsim是一个高效、易用的GPU加速库,用于模拟具有高度生物学细节的大规模脉冲神经网络(SNN)模型。CARLsim允许在通用x86CPU和标准现成GPU上以逼真的突触动力学执行Izhikevich脉冲神经元网络。该模拟器在C/C++中提供了一个类似PyNN的编程接口,允许在突触、神经元和网络级别指定详细信息和参数。二、CARLsim6的新功能包括:CUDA
- PMP备考神器:免费刷题小程序推荐
才聚PMP
人工智能职场和发展
【PMP考试通】是一款专门为备考PMP的免费刷题小程序。【PMP考试通】涵盖了考试中的所有考点,能帮你顺利通过PMP考试。还有最新的考试咨讯提供给大家,随时了解考试的动态,考试更安心。有两种练习模式,可以实现不同的练习需求。1、考试模式:完全模拟考试,做完之后计算得分,并可以查看相应解析2、练习模式:练习与学习,遇到不能解答的题目时,可以直接查看解析,学习当前知识点3、做题类型:章节练习、每日一练
- 大模型之提示词工程十指令——结合认知科学与高效学习法的AI协作指南
SEVEN-YEARS
学习人工智能
1.费曼学习法:用“教学”倒逼模型理解复杂概念原理:通过模拟教学场景,迫使模型深入理解知识本质。指令示例:“请用‘小学数学老师’的身份,向孩子解释区块链的基本原理。”输出:“区块链就像一个透明的记账本,每个人都可以看到上面的记录。比如你和同学一起买零食,大家轮流在本子上记录谁买了什么,这样没有人能偷偷修改记录。”应用场景:技术概念简化、跨领域知识迁移、科普内容生成。2.帕累托法则:聚焦关键20%的
- 解释神经网络的普适逼近定理(面试题200合集,中频、实用)
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)深度学习人工智能
神经网络的普适逼近定理(UniversalApproximationTheorem,UAT)是理解为什么神经网络如此强大和灵活的理论基石之一。它为我们提供了信心,即在某些条件下,一个相对简单的神经网络结构原则上能够模拟出几乎任何复杂的函数。这个定理在深度学习领域中经常被提及,尤其是在讨论模型表达能力的时候。普适逼近定理(UniversalApproximationTheorem)概述普适逼近定理的
- python爬虫登录校验之滑块验证、图形验证码(OCR)
yuwinter
Pythonpython爬虫ocr滑块验证
在爬虫过程中,验证码和滑块验证是常见的反爬措施。针对这些挑战,通常采用OCR识别图形验证码和模拟滑块拖动来处理滑块验证。以下是如何处理这两种类型验证的详细方法。1.图形验证码(OCR)a.使用tesserocr和Pillow处理图形验证码tesserocr是基于TesseractOCR引擎的Python封装,常用来识别简单的图形验证码。如果验证码不太复杂,可以用它来识别文本。步骤:安装依赖:pip
- 互联网大厂Java面试指南:从基础到高阶技术栈与业务场景实战
yiiyx
Java场景面试宝典JavaSpringBoot微服务面试分布式系统
互联网大厂Java面试指南:从基础到高阶技术栈与业务场景实战场景介绍本文模拟互联网大厂高级Java工程师面试场景,涵盖JavaSE、Spring生态、微服务、数据库、缓存、消息队列等技术栈,结合音视频、电商、金融等业务场景,提供3轮渐进式提问与详细解析。技术栈核心语言与平台:JavaSE(8/11/17),JakartaEE(JavaEE),JVM构建工具:Maven,Gradle,AntWeb框
- 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
weisian151
人工智能人工智能cnn神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理网格状数据(如图像、视频、音频)设计的深度学习模型。它通过模拟生物视觉机制,从原始数据中自动提取多层次的特征,最终实现高效的分类、检测或生成任务。1、核心概念与原理1、生物视觉启发局部感受野:模仿人类视觉皮层神经元仅响应局部区域刺激的特性,每个神经元关注输入数据的局部区域(如图像的一小块区域)。权值共享:同一
- 本地运行大型语言模型(LLM)的实践指南
yunwu12777
语言模型人工智能自然语言处理
技术背景介绍近年来,项目如llama.cpp、Ollama、GPT4All等的流行标志着在本地设备上运行大型语言模型(LLM)的需求日益增长。选择在本地运行LLM,至少有两个重要的好处:隐私和成本。隐私上,数据不需要发送到第三方,避免了商业服务条款的限制;成本方面,无需支付推理费用,尤其是对于那些需要大量计算的应用,如长时间的模拟和总结。核心原理解析在本地运行LLM,需要准备以下几个条件:开源LL
- 16、流体力学数值模拟
404Feels
流体力学数值模拟纳维-斯托克斯方程
流体力学数值模拟1.流体力学的基本方程流体力学是研究流体(液体和气体)运动规律的学科,其基本方程是纳维-斯托克斯方程(Navier-Stokesequation)。该方程描述了流体的速度、压力、温度等物理量随时间和空间的变化。为了便于数值求解,我们需要将这些方程离散化。以下是纳维-斯托克斯方程的标准形式:[\frac{\partial\mathbf{u}}{\partialt}+(\mathbf{
- 人工智能的发展历程与未来展望
唐骁虎
ai
人工智能的发展历程与未来展望一、人工智能的起源与早期发展1.1人工智能的定义与概念起源人工智能(AI)的定义与概念起源可追溯至20世纪中叶,当时一群具有远见的科学家和工程师开始探索机器是否能够模拟人类智能行为。1956年,在达特茅斯会议上,约翰·麦卡锡首次提出了“人工智能”这一术语,标志着该领域的正式诞生。AI的定义涉及创建能够执行需要人类智能的任务的机器,如视觉感知、语音识别、决策和语言翻译等。
- 电影感户外哑光人像自拍摄影Lr调色预设,手机滤镜PS+Lightroom预设下载!
调了个寂寞
电影预设lr调色照片调色摄影后期lr预设胶片预设
调色详情电影感户外哑光人像自拍摄影Lr调色,是借助Lightroom软件,针对户外环境下拍摄的人像自拍进行后期处理。旨在模拟电影画面的氛围与质感,通过调色赋予照片独特的艺术气息。强调打造哑光效果,使画面色彩不过于浓烈刺眼,而是呈现出柔和、细腻且带有独特质感的视觉效果,让照片具备电影般高级感与叙事感。预设信息调色风格:电影风格预设适合类型:人像,自拍,户外,风光,模特,封面照等预设格式:XMP+DN
- 关于JAVA中LIST元素修改的一个问题记录
在工作中有遇到一个问题,需要从既有获取数据库中的LIST数据,做一下对其中部分数据做处理存入另外一个LIST集合之中,但是,有些现象还是比较出乎我的意料的,模拟了一下相关场景,具体的代码如下:packagecom.interview.demo;importjava.util.ArrayList;importjava.util.List;classStudent{privateStringname;
- 机器学习算法——神经网络1(神经元模型)
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络中最基本的成分是神经元(neuron)模型。即上述定义中的“简单单元”。在生物神经网络中,每个神经元与其他申请元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经
- 网络安全防御:蓝队重保备战与应急溯源深度解析
网安认证小马135-2173-0416
web安全安全
课程目标本课程旨在培养专业的网络安全蓝队成员,通过系统化的学习和实战演练,使学员能够掌握网络安全防御的核心技能,包括资产测绘、应急响应、系统安全应急溯源分析、网络层溯源分析以及综合攻防演练等。学员将能够熟练运用各种工具和技术,有效应对网络攻击,保障企业信息安全。具体目标如下:增强综合攻防能力:通过综合训练,学员将能够模拟攻击者和企业安全人员,开展对抗练习,提升实战能力和团队协作能力。掌握蓝队核心技
- SQL Server 等待数据库引擎恢复句柄失败
y523648
数据库服务器运维
用管理员身份运行PowerShell,模拟扇区大小为4KbNew-ItemProperty-Path"HKLM:\SYSTEM\CurrentControlSet\Services\stornvme\Parameters\Device"-Name"ForcedPhysicalSectorSizeInBytes"-PropertyTypeMultiString-Force-Value"*4095"验
- AcWing--数据结构1
谢耳朵(wer~wer~)
Acwing学习数据结构c++算法
用数组来模拟链表。这种实现链表的方式也叫静态链表。1.单链表写邻接表:存储图和树我们定义:e[N]用来表示某个点的值是多少;ne[N]用来表示某个点的next指针是多少e和ne是用下标关联起来的如:head->3->5->7->9->空(下标从0开始,3的下标是0,以此类推,空的下标为-1)那么e[0]=3,ne[0]=1;e[1]=5,ne[1]=2;...e[3]=9,ne[3]=-1//单
- 中间件复习(java向,示例代码为java),所有问题都会有链接单独解析
搞不懂语言的程序员
重拾java中间件中间件java开发语言
根据近些年情况整理的Java服务常用中间件及面试复习指南(每个中间件10个以上问题+实战模拟)一、核心中间件清单(2020-2023高频使用)中间件分类典型中间件核心应用场景RPC框架Dubbo3.x、gRPC、SpringCloudOpenFeign微服务通信、跨语言调用消息队列Kafka、RocketMQ、RabbitMQ异步解耦、削峰填谷、顺序消息缓存Redis(集群/Redisson)、C
- 不是只有写稿能用AI!教你用AI“模拟审稿人”帮论文过关
学境思源AcademicIdeas
AI写作学境思源ChatGPT人工智能
在AI辅助写作火遍学术圈之后,学境思源,越来越多作者开始发现:AI的真正威力,并不只是帮你一键生成论文初稿!“写”,而是可以反过来“像审稿人一样看你的论文”。acaids.com。这种“反向应用”,正成为提高论文录用率的关键利器。今天这篇文章就告诉你:如何用AI模拟审稿人视角,检查论文的逻辑漏洞、结构混乱、语言问题,甚至帮助你发现数据论证不足,提前做出修改。我们会重点介绍Paperpal、Writ
- 生成式AI技术对未来知识生产模式的颠覆性影响:跨学科案例分析
德宿
人工智能
引言随着人工智能技术的迅猛发展,生成式AI作为一种革命性技术正在深刻地改变人类知识生产和学术研究的范式。生成式AI不仅能够创建原创内容,还能模拟人类思维过程,处理和生成大量数据,从而在各个学科领域展现出广阔的应用前景。本研究报告旨在深入探讨生成式AI技术对未来知识生产模式的颠覆性影响,通过对比传统学术研究与AI辅助研究的范式差异,并选取医学、法学、文学、经济学和艺术学等五个典型领域进行深度案例分析
- webdriver常用方法+鼠标键盘事件+浏览器高级操作
要站在顶端
UI自动化selenium
文章目录webdriver操作元素、获取元素常用方法浏览器控制浏览器cookies鼠标事件键盘事件**常用方法**上传文件内嵌网页iframe切换浏览器标签页切换页面滚动截图警告框处理下拉框处理webdriver操作元素、获取元素常用方法常用方法clear():清除文本。send_keys(value):模拟按键输入(被操作元素需要是个文本输入框)。click():单击元素。其他方法#size:返
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。