转自: http://blog.csdn.net/vv0_0vv/article/details/7449594
de项目需要,要实现在Android中实现串口的收发功能,有几种方法可以参考使用。
1. 标准的Android HAL层思想,把串口的功能加入framework的API中(类似于android中sensor的实现)
a. 确保驱动层中基于tty的串口驱动可以正常read、write、poll数据,当然了,也可以自己写一个字符驱动来实现串口的读写功能。
b. 在BSP的HAL层中添加串口读写功能的回调函数(linux 应用层 c/c++)
c. Android framework中添加jni层,解析HAL中生成的module,然后对回调函数进行封装,生成.so库,提供给java层。
d. 添加远程调用接口,使用aidl在framework中添加远程调用
e. 添加serviceManagement
2. 绕过HAL,直接使用JNI来完成读写等回调函数,之后同1 。
3. 绕过android系统,直接编写jni库,在应用程序中直接调用jni接口,完成串口的收发。
------------------------------------------------------------------------------
以上都是可用的方法,这里我采用最简单的第三种方法,其中第一种方法最繁琐,但也是android最标准的方法,之后我会在can bus的移植中使用(先打个哑谜^0^),OK 废话不多说,开始码代码,工作!
首先是驱动层,我使用的是fsl的开发板,这边freescale已经帮我们实现了驱动,可以在/dev/下发现ttymxc0,ttymxc1.。。。这些就是CPU上各个串口的驱动文件,可以尝试echo "123" > /dev/mxctty0 之后可以看到串口终端上会打印出“123”。
但是,我们做驱动的不能就这样拿着别人的东西就用,咱要分析,要学习,要膜拜,要抄袭,要。。。貌似我最喜欢干这种事情了,好吧,这里我自己照着Linux设备驱动详解这书写了一个虚拟的字符驱动,当做我们的串口吧。
提供了跟串口同样的功能,这个驱动中我使用阻塞的方式来读写数据,一边看书,一边学习,一边自己写代码,一边学习jni,一边学习android的框架,何乐而不为呢?
首先,我们要注册一个字符驱动,然后初始化等待队列,初始化信号量,初始化变量,给结构体分配内存空间,老一套了。。。是个写驱动的都知道要干这些事情。
/*设备驱动模块加载函数*/ int globalfifo_init(void) { int result; globalfifo_devp = kmalloc(sizeof(struct globalfifo_dev) ,GFP_KERNEL); if(!globalfifo_devp) { result = -ENOMEM; } memset(globalfifo_devp, 0, sizeof(struct globalfifo_dev)); globalfifo_devp->mdev = mdev_struct; result = misc_register(&(globalfifo_devp->mdev)); if(result<0) return result; init_MUTEX(&globalfifo_devp->sem); /*初始化信号量*/ init_waitqueue_head(&globalfifo_devp->r_wait); /*初始化读等待队列头*/ init_waitqueue_head(&globalfifo_devp->w_wait); /*初始化写等待队列头*/ return 0; }
/*globalfifo设备结构体*/ struct globalfifo_dev { // struct cdev cdev; /*cdev结构体*/ struct miscdevice mdev; unsigned int current_len; /*fifo有效数据长度*/ unsigned char mem[GLOBALFIFO_SIZE]; /*全局内存*/ struct semaphore sem; /*并发控制用的信号量*/ wait_queue_head_t r_wait; /*阻塞读用的等待队列头*/ wait_queue_head_t w_wait; /*阻塞写用的等待队列头*/ };
顾名思义,就是堵在那边不动了,其实是真的不动了,利用等待队列实现设备的阻塞,当用户进程访问系统资源的时候,当这个资源不能被访问,我们又不想让之后的事情继续发生,这样的话我们就可以阻塞在那边,放心,我们可以让该进程进入休眠,这样的话就不会浪费CPU的资源了,然而等到这个资源可以访问的时候,我们就可以唤醒该阻塞的进程,继续让他执行下去,如果没有地方唤醒他,那他就真的“堵死”在那边了。
简单的介绍了下,接下来看看我们要实现哪些功能函数
/*文件操作结构体*/ static const struct file_operations globalfifo_fops = { .owner = THIS_MODULE, .read = globalfifo_read, .write = globalfifo_write, .ioctl = globalfifo_ioctl, .poll = globalfifo_poll, .open = globalfifo_open, .release = globalfifo_release, };
struct globalfifo_dev *globalfifo_devp; /*设备结构体指针*/ /*文件打开函数*/ int globalfifo_open(struct inode *inode, struct file *filp) { /*将设备结构体指针赋值给文件私有数据指针*/ filp->private_data = globalfifo_devp; return 0; } /*文件释放函数*/ int globalfifo_release(struct inode *inode, struct file *filp) { return 0; }
但是这里我们没做什么,我们只是把我们的全局结构体变量赋值给了这里filp的一个私有成员变量中,这样的话我们可以再每一个功能函数中取出这个私有成员,有利于代码的可读性,release就不讲了。
/*globalfifo读函数*/ static ssize_t globalfifo_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) { int ret; struct globalfifo_dev *dev = filp->private_data; //获得设备结构体指针 DECLARE_WAITQUEUE(wait, current); //定义等待队列 down(&dev->sem); //获得信号量 add_wait_queue(&dev->r_wait, &wait); //进入读等待队列头 /* 等待FIFO非空 */ while (dev->current_len == 0) { if (filp->f_flags &O_NONBLOCK) { ret = - EAGAIN; goto out; } __set_current_state(TASK_INTERRUPTIBLE); //改变进程状态为睡眠 up(&dev->sem); schedule(); //调度其他进程执行 if (signal_pending(current)) //如果是因为信号唤醒 { ret = - ERESTARTSYS; goto out2; } down(&dev->sem); } /* 拷贝到用户空间 */ if (count > dev->current_len) count = dev->current_len; if (copy_to_user(buf, dev->mem, count)) { ret = - EFAULT; goto out; } else { memcpy(dev->mem, dev->mem + count, dev->current_len - count); //fifo数据前移 dev->current_len -= count; //有效数据长度减少 printk(KERN_INFO "read %d bytes(s),current_len:%d\n", count, dev->current_len); wake_up_interruptible(&dev->w_wait); //唤醒写等待队列 ret = count; } out: up(&dev->sem); //释放信号量 out2: remove_wait_queue(&dev->w_wait, &wait); //从附属的等待队列头移除 set_current_state(TASK_RUNNING); return ret; }
首先是把当前进城加入等待队列中add_wait_queue(&dev->r_wait, &wait);
没东西读的时候,使进程睡眠,在调度到别的任务去
/* 等待FIFO非空 */ while (dev->current_len == 0) { if (filp->f_flags &O_NONBLOCK) { ret = - EAGAIN; goto out; } __set_current_state(TASK_INTERRUPTIBLE); //改变进程状态为睡眠 up(&dev->sem); schedule(); //调度其他进程执行 if (signal_pending(current)) //如果是因为信号唤醒 { ret = - ERESTARTSYS; goto out2; } down(&dev->sem); }
/*globalfifo写操作*/ static ssize_t globalfifo_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { struct globalfifo_dev *dev = filp->private_data; //获得设备结构体指针 int ret; DECLARE_WAITQUEUE(wait, current); //定义等待队列 down(&dev->sem); //获取信号量 add_wait_queue(&dev->w_wait, &wait); //进入写等待队列头 /* 等待FIFO非满 */ while (dev->current_len == GLOBALFIFO_SIZE) { if (filp->f_flags &O_NONBLOCK) //如果是非阻塞访问 { ret = - EAGAIN; goto out; } __set_current_state(TASK_INTERRUPTIBLE); //改变进程状态为睡眠 up(&dev->sem); schedule(); //调度其他进程执行 if (signal_pending(current)) //如果是因为信号唤醒 { ret = - ERESTARTSYS; goto out2; } down(&dev->sem); //获得信号量 } /*从用户空间拷贝到内核空间*/ if (count > GLOBALFIFO_SIZE - dev->current_len) count = GLOBALFIFO_SIZE - dev->current_len; if (copy_from_user(dev->mem + dev->current_len, buf, count)) { ret = - EFAULT; goto out; } else { dev->current_len += count; printk(KERN_INFO "written %d bytes(s),current_len:%d\n", count, dev->current_len); wake_up_interruptible(&dev->r_wait); //唤醒读等待队列
写函数最后会唤醒我们的等待队列,因为写进去东西了,就可以去读了,就是这样,这部分跟我们的串口收发相同。
别的功能我就不说了,OK,驱动完成之后,我们加载进去,然后进行测试下。
首先我们去cat /dev/globalfifo
发生阻塞,一直停在那,这时候我们再打开一个终端,去写数据
echo "123" > /dev/globalfifo
写完之后,我们立马会发现之前的cat有东西出来了,每次都会把数据全部读出来。
==================================================
下面是我们的jni,首先咱要明确我们做的事情,打开设备,读设备,最后不用的话就关闭设备,所以我们至少要实现这3个API,
#define FIFO_CLEAR 0x01 #define BUFFER_LEN 20 #define GLOBALFIFO_PATH "/dev/globalfifo" int globalfifo_fd = -1; JNIEXPORT jint JNICALL Java_com_liujun_globalfifo_init(JNIEnv *env, jobject obj) { globalfifo_fd = open(GLOBALFIFO_PATH, O_RDONLY); // | O_NOBLOCK if(globalfifo_fd != -1) { __android_log_print(ANDROID_LOG_INFO,"JNI","open device done."); //clear the buff if(ioctl(globalfifo_fd, FIFO_CLEAR, 0) < 0) __android_log_print(ANDROID_LOG_INFO,"JNI","clear buff error!"); } else __android_log_print(ANDROID_LOG_INFO,"JNI","open device error!"); }
JNIEXPORT jstring JNICALL Java_com_liujun_globalfifo_read(JNIEnv *env, jobject obj) { int nread = 0; char buff[512] = ""; __android_log_print(ANDROID_LOG_INFO,"JNI","read !"); nread = read(globalfifo_fd, buff, sizeof(buff)); if(nread != -1) __android_log_print(ANDROID_LOG_INFO,"JNI","===> %s", buff); return (*env)->NewStringUTF(env, buff); }
JNIEXPORT jint JNICALL Java_com_liujun_globalfifo_exit(JNIEnv *env, jobject obj) { close(globalfifo_fd); __android_log_print(ANDROID_LOG_INFO,"JNI","close done!"); return 0; }
===========================================
接下来我们创建一个Android 工程,导入jni库并且定义native API
public native int init(); public native String read(); public native int exit(); static { System.loadLibrary("globalfifo"); }
public class MyThread implements Runnable{ public void run() { // TODO Auto-generated method stub while (true) { try { Thread.sleep(100);// string = read(); Message message=new Message(); message.what=1; handler.sendMessage(message);//發送消息 } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } } class MyButtonListener implements OnClickListener{ public void onClick(View v) { if(v.getId() == R.id.start ){ init(); } if(v.getId() == R.id.read) { //string = read(); //Toast.makeText(mContext, string, Toast.LENGTH_SHORT).show(); new Thread(new MyThread()).start(); } if(v.getId() == R.id.close) { exit(); } } }
echo "Jay Zhang" > dev/globalfifo
可以看到有Jay Zhang 吐出来。
=================================================
这样就模拟了串口,之后我们会用标准的android流程来完成can bus在android 设备上的开发。