【题目链接】:click here~~
骨牌,一种古老的玩具。今天我们要研究的是骨牌的覆盖问题:
我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘。对于这个棋盘,一共有多少种不同的覆盖方法呢?
举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式:
提示:骨牌覆盖
提示:如何快速计算结果
第1行:1个整数N。表示棋盘长度。1≤N≤100,000,000
第1行:1个整数,表示覆盖方案数 MOD 19999997
62247088
17748018
我们考虑在已经放置了部分骨牌(灰色)的情况下,下一步可以如何放置新的骨牌(蓝色):
最右边的一种情况是不可能发生的,否则会始终多一个格子没有办法放置骨牌。或者说灰色部分的格子数为奇数,不可能通过1x2个骨牌放置出来。
当N很小的时候,我们直接通过递推公式便可以计算。当N很大的时候,只要我们的电脑足够好,我们仍然可以直接通过递推公式来计算。
但是我们学算法的,总是这样直接枚举不是显得很Low么,所以我们要用一个好的算法来加速(装X)。
事实上,对于这种线性递推式,我们可以用矩阵乘法来求第n项。对于本题Fibonacci数列,我们希望找到一个2x2的矩阵M,使得(a, b) x M = (b, a+b),其中(a, b)和(b, a+b)都是1x2的矩阵。
显然,只需要取M = [0, 1; 1, 1]就可以了:
进一步得到: 那么接下来的问题是,能不能快速的计算出M^n?我们先来分析一下幂运算。由于乘法是满足结合律的,所以我们有: 不妨将k[1]..k[j]划分的更好一点? 其中(k[1],k[2]...k[j])2表示将n表示成二进制数后每一位的数字。上面这个公式同时满足这样一个性质:
结合这两者我们可以得到一个算法:
代码:
#include <bits/stdc++.h> using namespace std; #define LL long long const LL MOD=19999997; LL N; int i,j; struct Matrlc { LL mapp[2][2]; } ans,base; Matrlc unit= {1,0,0,1}; Matrlc mult(Matrlc a,Matrlc b) { Matrlc c; for(int i=0; i<2; i++) for(int j=0; j<2; j++) { c.mapp[i][j]=0; for(int k=0; k<2; k++) c.mapp[i][j]+=(a.mapp[i][k]*b.mapp[k][j])%MOD; c.mapp[i][j]%=MOD; } return c; } LL pow(LL n) { base.mapp[0][0] =base.mapp[0][1]=base.mapp[1][0]=1; base.mapp[1][1]=0; ans.mapp[0][0] = ans.mapp[1][1] = 1;// ans 初始化为单位矩阵 ans.mapp[0][1] = ans.mapp[1][0] = 0; while(n) { if(n&1) ans=mult(ans,base); base=mult(base,base); n>>=1; } return ans.mapp[0][1]%MOD; } int main() { scanf("%lld",&N); printf("%lld\n",pow(N+1)%MOD); return 0; }