package BitCount; /** * 任意给定一个32位无符号整数n,求n的二进制表示中1的个数,比如n = 5(0101)时,返回2,n = 15(1111)时,返回4 * * @author vivizhyy * */ public interface BitCountMethods { /** 移位+计数 */ public int normal(int x); /** 不断清除x的二进制表示中最右边的1,同时累加计数器,直至x为0 */ public int quick(int x); /** * @see #static8bit(int) */ public int static4bit(int x); /** * 首先构造一个包含256个元素的表table,table[i]即i中1的个数,这里的i是[0-255]之间任意一个值。 * 然后对于任意一个32bit无符号整数n * ,我们将其拆分成四个8bit,然后分别求出每个8bit中1的个数,再累加求和即可,这里用移位的方法,每次右移8位 * ,并与0xff相与,取得最低位的8bit * ,累加后继续移位,如此往复,直到n为0。所以对于任意一个32位整数,需要查表4次。以十进制数2882400018为例 * ,其对应的二进制数为10101011110011011110111100010010 * ,对应的四次查表过程如下:红色表示当前8bit,绿色表示右移后高位补零。 * * 第一次(n & 0xff) 10101011110011011110111100010010 * * 第二次((n >> 8) & 0xff) 00000000101010111100110111101111 * * 第三次((n >> 16) & 0xff)00000000000000001010101111001101 * * 第四次((n >> 24) & 0xff)00000000000000000000000010101011 */ public int static8bit(int x); /** 先将n写成二进制形式,然后相邻位相加,重复这个过程,直到只剩下一位。 * 1 1 0 1 1 0 0 1 * \ / \ / \ / \ / * 2 1 1 1 * \ / \ / * 3 2 * \ / * 5 */ public int parallel(int x); /** http://www.cnblogs.com/graphics/archive/2010/06/21/1752421.html */ public int perfectness(int x); }
package BitCount; public class BitCounts implements BitCountMethods { @Override public int normal(int x) { int c = 0; for (; x > 0; x >>>= 1) { c += x & 1; // 如果当前位是 1,计数器加 1 } return c; } @Override public int quick(int x) { int c = 0; for (; x > 0; c++) { x &= (x - 1); // 清除最右边的 1 } return c; } @Override public int static4bit(int x) { int[] table = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; int c = 0; for (; x > 0; x >>>= 4) { c += table[x & 0xF]; } return c; } @Override public int static8bit(int x) { int[] table = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, }; int c = 0; for(; x > 0; x >>>= 8){ c += table[x & 0xFF]; } return c; } @Override public int parallel(int x) { // 0x55 = 0101 0101 x = (x & 0x55555555) + ((x >>> 1) & 0x55555555); //0x33 = 0011 0011 x = (x & 0x33333333) + ((x >>> 2) & 0x33333333); //0x0f = 0000 1111 x = (x & 0x0f0f0f0f) + ((x >>> 4) & 0x0f0f0f0f); //0x00ff = 0000 0000 1111 1111 x = (x & 0x00ff00ff) + ((x >>> 8) & 0x00ff00ff); //0x0000ffff = 0000 0000 0000 0000 1111 1111 1111 1111 x = (x & 0x0000ffff) + ((x >>> 16) & 0x0000ffff); return x; } @Override public int perfectness(int x) { int temp = x - (x >>> 1) & 033333333333 - (x >>> 2) & 011111111111; return (temp +(temp >>>3)) & 030707070707 % 63; } }
package BitCount; import static org.junit.Assert.*; import org.junit.Test; public class BitCountMethodsTest { BitCountMethods bcm = new BitCounts(); int x = 123; @Test public final void testNormal() { assert(bcm.normal(x) == 6); } @Test public final void testQuick() { assert(bcm.quick(x) == 6); } @Test public final void testStatic4bit() { assert(bcm.static4bit(x) == 6); } @Test public final void testStatic8bit() { assert(bcm.static8bit(x) == 6); } @Test public final void testParallel() { assert(bcm.parallel(x) == 6); } @Test public final void testPerfectness() { assert(bcm.perfectness(x) == 6); } }