OpenCV学习之CvMat的用法详解及实例
目 录
1.初始化矩阵:. 1
2.IplImage 到cvMat的转换. 1
3.cvArr(IplImage或者cvMat)转化为cvMat 1
4.图像直接操作. 2
5.cvMat的直接操作. 3
6.间接访问cvMat 4
7.修改矩阵的形状——cvReshape的操作. 5
8.计算色彩距离. 7
在开始学习矩阵的相关内容之前,我们需要知道两件事情。第一,在OpenCV中没有向量(vector)结构。任何时候需要向量,都只需要一个列矩阵(如果需要一个转置或者共轭向量,则需要一个行矩阵)。第二,OpenCV矩阵的概念与我们在线性代数课上学习的概念相比,更抽象,尤其是矩阵的元素,并非只能取简单的数值类型。例如,一个用于新建一个二维矩阵的例程具有以下原型:
cvMat* cvCreateMat ( int rows, int cols, int type );
这里type可以是任何预定义类型,预定义类型的结构如下:CV_<bit_depth> (S|U|F)C<number_of_channels>。于是,矩阵的元素可以是32位浮点型数据(CV_32FC1),或者是无符号的8位三元组的整型数据(CV_8UC3),或者是无数的其他类型的元素。一个CvMat的元素不一定就是个单一的数字。在矩阵中可以通过单一(简单)的输入来表示多值,这样我们可以在一个三原色图像上描绘多重色彩通道。对于一个包含RGB通道的简单图像,大多数的图像操作将分别应用于每一个通道(除非另有说明)。
实质上,正如例3-1所示,CvMat的结构相当简单,(可以自己打开文件…/opencv/cxcore/include/cxtypes.h查看)。矩阵由宽度(width)、高度(height)、类型(type)、行数据长度(step,行的长度用字节表示而不是整型或者浮点型长度)和一个指向数据的指针构成(现在我们还不能讨论更多的东西)。可以通过一个指向CvMat的指针访问这些成员,或者对于一些普通元素,使用现成的访问方法。例如,为了获得矩阵的大小,可通过调用函数vGetSize(CvMat*),返回一个CvSize结构,便可以获取任何所需信息,或者通过独立访问高度和宽度,结构为matrix->height 和matrix->width。
一旦我们创建了一个矩阵,便可用它来完成很多事情。最简单的操作就是查询数组定义和数据访问等。为查询矩阵,我们可以使用函数cvGetElemType(const CvArr* arr),cvGetDims(const CvArr* arr, int* sizes=NULL)和cvGet- DimSize(const CvArr* arr,int index)。第一个返回一个整型常数,表示存储在数组里的元素类型(它可以为CV_8UC1和CV_64FC4等类型)。第二个取出数组以及一个可选择的整型指针,它返回维数(我们当前的实例是二维,但是在后面我们将遇到的N维矩阵对象)。如果整型指针不为空,它将存储对应数组的高度和宽度(或者N维数)。最后的函数通过一个指示维数的整型数简单地返回矩阵在那个维数上矩阵的大小。
CvMat是OpenCV比较基础的函数。初学者应该掌握并熟练应用。但是我认为计算机专业学习的方法是,不断的总结并且提炼,同时还要做大量的实践,如编码,才能记忆深刻,体会深刻,从而引导自己想更高层次迈进。
方式一、逐点赋值式:
CvMat*mat = cvCreateMat( 2, 2, CV_64FC1 );
cvZero( mat );
cvmSet( mat, 0, 0, 1 );
cvmSet( mat, 0, 1, 2 );
cvmSet( mat, 1, 0, 3 );
cvmSet( mat, 2, 2, 4 );
cvReleaseMat( &mat );
方式二、连接现有数组式:
doublea[] = { 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12 };
CvMat mat = cvMat( 3, 4, CV_64FC1, a ); // 64FC1 for double
// 不需要cvReleaseMat,因为数据内存分配是由double定义的数组进行的。
方式一、cvGetMat方式:
CvMat mathdr,*mat = cvGetMat( img, &mathdr );
方式二、cvConvert方式:
CvMat *mat =cvCreateMat( img->height, img->width, CV_64FC3 );
cvConvert( img, mat );
// #define cvConvert( src, dst ) cvConvertScale( (src), (dst), 1, 0 )
3.cvArr(IplImage或者cvMat)转化为cvMat
方式一、cvGetMat方式:
int coi = 0;
cvMat *mat = (CvMat*)arr;
if( !CV_IS_MAT(mat) )
{
mat = cvGetMat( mat, &matstub, &coi );
if (coi != 0) reutn; // CV_ERROR_FROM_CODE(CV_BadCOI);
}
写成函数为:
// This is justan example of function
// to support both IplImage and cvMat as an input
CVAPI( void ) cvIamArr( const CvArr* arr )
{
CV_FUNCNAME( "cvIamArr" );
__BEGIN__;
CV_ASSERT( mat == NULL );
CvMat matstub, *mat = (CvMat*)arr;
int coi = 0;
if( !CV_IS_MAT(mat) )
{
CV_CALL( mat = cvGetMat( mat,&matstub, &coi ) );
if (coi != 0)CV_ERROR_FROM_CODE(CV_BadCOI);
}
// Process as cvMat
__END__;
}
4.图像直接操作
方式一:直接数组操作 int col, row, z;
uchar b, g, r;
for( y = 0; row < img->height; y++ )
{
for ( col = 0; col < img->width; col++ )
{
b = img->imageData[img->widthStep * row + col *3]
g = img->imageData[img->widthStep * row + col *3 + 1];
r = img->imageData[img->widthStep * row + col *3 + 2];
}
}
方式二:宏操作:
int row, col;
uchar b, g, r;
for( row = 0; row < img->height; row++ )
{
for ( col = 0; col < img->width; col++ )
{
b = CV_IMAGE_ELEM( img, uchar, row, col * 3 );
g = CV_IMAGE_ELEM( img, uchar, row, col * 3 + 1 );
r = CV_IMAGE_ELEM( img, uchar, row, col * 3 + 2 );
}
}
注:CV_IMAGE_ELEM(img, uchar, row, col * img->nChannels + ch )
5.cvMat的直接操作
数组的直接操作比较郁闷,这是由于其决定于数组的数据类型。
对于CV_32FC1 (1 channel float):
CvMat* M =cvCreateMat( 4, 4, CV_32FC1 );
M->data.fl[ row * M->cols + col ] = (float)3.0;
对于CV_64FC1 (1 channel double):
CvMat* M =cvCreateMat( 4, 4, CV_64FC1 );
M->data.db[ row * M->cols + col ] = 3.0;
一般的,对于1通道的数组:
CvMat* M =cvCreateMat( 4, 4, CV_64FC1 );
CV_MAT_ELEM( *M, double, row, col ) = 3.0;
注意double要根据数组的数据类型来传入,这个宏对多通道无能为力。
对于多通道:
看看这个宏的定义:#defineCV_MAT_ELEM_CN( mat, elemtype, row, col ) \
(*(elemtype*)((mat).data.ptr + (size_t)(mat).step*(row) +sizeof(elemtype)*(col)))
if( CV_MAT_DEPTH(M->type) == CV_32F )
CV_MAT_ELEM_CN( *M, float, row, col * CV_MAT_CN(M->type)+ ch ) = 3.0;
if( CV_MAT_DEPTH(M->type) == CV_64F )
CV_MAT_ELEM_CN( *M, double, row, col * CV_MAT_CN(M->type)+ ch ) = 3.0;
更优化的方法是:
#define CV_8U 0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7
intelem_size = CV_ELEM_SIZE( mat->type );
for( col = start_col; col < end_col; col++ ) {
for( row = 0; row < mat->rows; row++ ) {
for( elem = 0; elem < elem_size;elem++ ) {
(mat->data.ptr + ((size_t)mat->step * row) + (elem_size * col))[elem] =
(submat->data.ptr + ((size_t)submat->step * row) + (elem_size * (col -start_col)))[elem];
}
}
}
对于多通道的数组,以下操作是推荐的:
for(row=0;row< mat->rows; row++)
{
p = mat->data.fl + row *(mat->step/4);
for(col = 0; col < mat->cols;col++)
{
*p = (float)row+col;
*(p+1) =(float) row+col+1;
*(p+2)=(float) row+col+2;
p+=3;
}
}
对于两通道和四通道而言:
CvMat* vector =cvCreateMat( 1, 3, CV_32SC2 );
CV_MAT_ELEM( *vector, CvPoint, 0, 0 ) = cvPoint(100,100);
CvMat*vector = cvCreateMat( 1, 3, CV_64FC4 );
CV_MAT_ELEM( *vector, CvScalar, 0, 0 ) = cvScalar(0,0,0,0);
6.间接访问cvMat
cvmGet/Set是访问CV_32FC1 和 CV_64FC1型数组的最简便的方式,其访问速度和直接访问几乎相同
cvmSet( mat,row, col, value );
cvmGet( mat, row, col );
举例:打印一个数组
inline voidcvDoubleMatPrint( const CvMat* mat )
{
int i, j;
for( i = 0; i < mat->rows; i++ )
{
for( j = 0; j < mat->cols; j++)
{
printf("%f ",cvmGet( mat, i, j ) );
}
printf( "\n" );
}
}
而对于其他的,比如是多通道的后者是其他数据类型的,cvGet/Set2D是个不错的选择
CvScalar scalar= cvGet2D( mat, row, col );
cvSet2D( mat, row, col, cvScalar( r, g, b ) );
注意:数据不能为int,因为cvGet2D得到的实质是double类型。
举例:打印一个多通道矩阵:
inline voidcv3DoubleMatPrint( const CvMat* mat )
{
int i, j;
for( i = 0; i < mat->rows; i++ )
{
for( j = 0; j < mat->cols; j++)
{
CvScalarscal = cvGet2D( mat, i, j );
printf("(%f,%f,%f) ", scal.val[0], scal.val[1], scal.val[2] );
}
printf( "\n" );
}
}
7.修改矩阵的形状——cvReshape的操作
经实验表明矩阵操作的进行的顺序是:首先满足通道,然后满足列,最后是满足行。
注意:这和Matlab是不同的,Matlab是行、列、通道的顺序。
我们在此举例如下:
对于一通道:
// 1 channel
CvMat *mat, mathdr;
double data[] = { 11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34 };
CvMat* orig = &cvMat( 3, 4, CV_64FC1, data );
//11 12 13 14
//21 22 23 24
//31 32 33 34
mat = cvReshape( orig, &mathdr, 1, 1 ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
// 11 12 13 14 21 22 23 24 31 32 33 34
mat = cvReshape( mat, &mathdr, 1, 3 ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14
//21 22 23 24
//31 32 33 34
mat = cvReshape( orig, &mathdr, 1, 12 ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
// 11
// 12
// 13
// 14
// 21
// 22
// 23
// 24
// 31
// 32
// 33
// 34
mat = cvReshape( mat, &mathdr, 1, 3 ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14
//21 22 23 24
//31 32 33 34
mat = cvReshape( orig, &mathdr, 1, 2 ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14 21 22
//23 24 31 32 33 34
mat = cvReshape( mat, &mathdr, 1, 3 ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14
//21 22 23 24
//31 32 33 34
mat = cvReshape( orig, &mathdr, 1, 6 ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
// 11 12
// 13 14
// 21 22
// 23 24
// 31 32
// 33 34
mat = cvReshape( mat, &mathdr, 1, 3 ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14
//21 22 23 24
//31 32 33 34
// Use cvTranspose and cvReshape( mat, &mathdr, 1, 2 ) to get
// 11 23
// 12 24
// 13 31
// 14 32
// 21 33
// 22 34
// Use cvTranspose again when to recover
对于三通道
// 3 channels
CvMat mathdr, *mat;
double data[] = { 111, 112, 113, 121, 122, 123,
211, 212, 213, 221, 222, 223 };
CvMat* orig = &cvMat( 2, 2, CV_64FC3, data );
//(111,112,113) (121,122,123)
//(211,212,213) (221,222,223)
mat = cvReshape( orig, &mathdr, 3, 1 ); // new_ch, new_rows
cv3DoubleMatPrint( mat ); // above
// (111,112,113) (121,122,123) (211,212,213) (221,222,223)
// concatinate in column first order
mat = cvReshape( orig, &mathdr, 1, 1 );// new_ch, new_rows
cvDoubleMatPrint( mat ); // above
// 111 112 113 121 122 123 211 212 213 221 222 223
// concatinate in channel first, column second, row third
mat = cvReshape( orig, &mathdr, 1, 3); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//111 112 113 121
//122 123 211 212
//213 221 222 223
// channel first, column second, row third
mat = cvReshape( orig, &mathdr, 1, 4 ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//111 112 113
//121 122 123
//211 212 213
//221 222 223
// channel first, column second, row third
// memorize this transform because this is useful to
// add (or do something) color channels
CvMat* mat2 = cvCreateMat( mat->cols, mat->rows, mat->type );
cvTranspose( mat, mat2 );
cvDoubleMatPrint( mat2 ); // above
//111 121 211 221
//112 122 212 222
//113 123 213 223
cvReleaseMat( &mat2 );
8.计算色彩距离
我们要计算img1,img2的每个像素的距离,用dist表示,定义如下
IplImage *img1= cvCreateImage( cvSize(w,h), IPL_DEPTH_8U, 3 );
IplImage *img2 = cvCreateImage( cvSize(w,h), IPL_DEPTH_8U, 3 );
CvMat *dist = cvCreateMat( h, w, CV_64FC1 );
比较笨的思路是:cvSplit->cvSub->cvMul->cvAdd
代码如下:
IplImage *img1B= cvCreateImage( cvGetSize(img1), img1->depth, 1 );
IplImage *img1G = cvCreateImage( cvGetSize(img1), img1->depth, 1 );
IplImage *img1R = cvCreateImage( cvGetSize(img1), img1->depth, 1 );
IplImage *img2B = cvCreateImage( cvGetSize(img1), img1->depth, 1 );
IplImage *img2G = cvCreateImage( cvGetSize(img1), img1->depth, 1 );
IplImage *img2R = cvCreateImage( cvGetSize(img1), img1->depth, 1 );
IplImage *diff = cvCreateImage( cvGetSize(img1),IPL_DEPTH_64F, 1 );
cvSplit( img1, img1B, img1G, img1R );
cvSplit( img2, img2B, img2G, img2R );
cvSub( img1B, img2B, diff );
cvMul( diff, diff, dist );
cvSub( img1G, img2G, diff );
cvMul( diff, diff, diff);
cvAdd( diff, dist, dist );
cvSub( img1R, img2R, diff );
cvMul( diff, diff, diff );
cvAdd( diff, dist, dist );
cvReleaseImage( &img1B );
cvReleaseImage( &img1G );
cvReleaseImage( &img1R );
cvReleaseImage( &img2B );
cvReleaseImage( &img2G );
cvReleaseImage( &img2R );
cvReleaseImage( &diff );
比较聪明的思路是
int D =img1->nChannels; // D: Number of colors (dimension)
int N = img1->width * img1->height; // N: number of pixels
CvMat mat1hdr, *mat1 = cvReshape( img1, &mat1hdr, 1, N ); // N x D(colors)
CvMat mat2hdr, *mat2 = cvReshape( img2, &mat2hdr, 1, N ); // N x D(colors)
CvMat diffhdr, *diff = cvCreateMat( N, D, CV_64FC1 ); // N x D, temporal buff
cvSub( mat1, mat2, diff );
cvMul( diff, diff, diff );
dist = cvReshape( dist, &disthdr, 1, N ); // nRow x nCol to N x 1
cvReduce( diff, dist, 1, CV_REDUCE_SUM ); // N x D to N x 1
dist = cvReshape( dist, &disthdr, 1, img1->height ); // Restore N x 1 tonRow x nCol
cvReleaseMat( &diff );
#pragmacomment( lib, "cxcore.lib" )
#include "cv.h"
#include <stdio.h>
int main()
{
CvMat* mat = cvCreateMat(3,3,CV_32FC1);
cvZero(mat);//将矩阵置0
//为矩阵元素赋值
CV_MAT_ELEM(*mat, float, 0, 0 ) = 1.f;
CV_MAT_ELEM( *mat, float, 0, 1 ) = 2.f;
CV_MAT_ELEM( *mat, float, 0, 2 ) = 3.f;
CV_MAT_ELEM( *mat, float, 1, 0 ) = 4.f;
CV_MAT_ELEM( *mat, float, 1, 1 ) = 5.f;
CV_MAT_ELEM( *mat, float, 1, 2 ) = 6.f;
CV_MAT_ELEM( *mat, float, 2, 0 ) = 7.f;
CV_MAT_ELEM( *mat, float, 2, 1 ) = 8.f;
CV_MAT_ELEM( *mat, float, 2, 2 ) = 9.f;
//获得矩阵元素(0,2)的值
float *p =(float*)cvPtr2D(mat, 0, 2);
printf("%f\n",*p);
return 0;
}