主机DNS配置:
192.168.177.167 machine-1 192.168.177.168 machine-2 192.168.177.158 machine-0 192.168.177.174 hadoop-master hbase-master
hadoop-maser 和machine-2当主机,其它机器当做collector机,存储在HDFS中。
hadoop-master和machine-2机上的flume配置:
agent.sources=s1 agent.channels=c1 agent.sinks=k1 k2 agent.sinkgroups = g1 agent.sinkgroups.g1.sinks = k1 k2 agent.sinkgroups.g1.processor.type = load_balance agent.sinkgroups.g1.processor.selector = round_robin agent.sinkgroups.g1.processor.backoff = true agent.sources.s1.type=avro agent.sources.s1.channels=c1 agent.sources.s1.bind=0.0.0.0 agent.sources.s1.port=51515 agent.sources.s1.interceptors=i1 agent.sources.s1.interceptors.i1.type=timestamp agent.channels.c1.type=jdbc agent.sinks.k1.channel = c1 agent.sinks.k1.type = avro agent.sinks.k1.hostname = machine-0 agent.sinks.k1.port = 51515 agent.sinks.k2.channel = c1 agent.sinks.k2.type = avro agent.sinks.k2.hostname = machine-1 agent.sinks.k2.port = 51515
machine-1 和machine-0的flume配置:
agent.sources=s1 agent.channels=c1 agent.sinks=k1 agent.sources.s1.type=avro agent.sources.s1.channels=c1 agent.sources.s1.bind=0.0.0.0 agent.sources.s1.port=51515 agent.channels.c1.type=jdbc agent.sinks.k1.type=hdfs agent.sinks.k1.channel=c1 agent.sinks.k1.hdfs.path=/flume/%Y/%m agent.sinks.k1.hdfs.filePrefix=flume agent.sinks.k1.hdfs.fileSuffix=.log agent.sinks.k1.hdfs.rollInterval=3600 agent.sinks.k1.hdfs.rollCount=0 agent.sinks.k1.hdfs.rollSize=0 agent.sinks.k1.hdfs.fileType=DataStream agent.sinks.k1.hdfs.writeFormat=Text agent.sinks.k1.hdfs.useLocalTimeStamp=false
log4j的配置:
# File Appender rootLog log4j.rootLogger=DEBUG,stdout,rootLog #console configure for DEV environment log4j.appender.stdout=org.apache.log4j.ConsoleAppender log4j.appender.stdout.layout=org.apache.log4j.PatternLayout log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p (%c:%L) - %m%n log4j.appender.rootLog=org.apache.log4j.RollingFileAppender log4j.appender.rootLog.File= rootLog.log log4j.appender.rootLog.MaxFileSize=5000KB log4j.appender.rootLog.MaxBackupIndex=20 log4j.appender.rootLog.layout=org.apache.log4j.PatternLayout log4j.appender.rootLog.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p (%c:%L) - %m%n # File Appender boentel #log4j.logger.com.boentel=DEBUG,boentel #log4j.additivity.com.boentel=true #log4j.appender.boentel=org.apache.log4j.RollingFileAppender #log4j.appender.boentel.File= boentel.log #log4j.appender.boentel.MaxFileSize=2000KB #log4j.appender.boentel.MaxBackupIndex=20 #log4j.appender.boentel.layout=org.apache.log4j.PatternLayout #log4j.appender.boentel.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p (%c:%L) - %m%n log4j.logger.com.loadbalance= DEBUG,loadbalance log4j.additivity.com.loadbalance= true log4j.appender.loadbalance = org.apache.flume.clients.log4jappender.LoadBalancingLog4jAppender log4j.appender.loadbalance.Hosts =machine-2:51515 hadoop-master:51515 #log4j.appender.loadbalance.UnsafeMode = true log4j.appender.out2.MaxBackoff = 30000 #FQDN RANDOM ,default is ROUND_ROBIN log4j.appender.loadbalance.Selector = RANDOM log4j.appender.loadbalance.layout=org.apache.log4j.PatternLayout log4j.appender.loadbalance.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p (%c:%L) - %m%n
测试代码:
import java.util.Date; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; import org.apache.log4j.Logger; public class Worker implements Runnable{ private static final Logger LOG = Logger.getLogger(Worker.class); private String command; /** * @param args */ public static void main(String[] args) { new Worker("0").init(); } public void init(){ int numWorkers = 1; int threadPoolSize = 3 ; ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(threadPoolSize); //schedule to run after sometime System.out.println("Current Time = "+new Date()); Worker worker = null; for(int i=0; i< numWorkers; i++){ try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } worker = new Worker("do heavy processing"); // scheduledThreadPool.schedule(worker, 10, TimeUnit.SECONDS); //scheduleAtFixedRate // scheduledThreadPool.scheduleAtFixedRate(worker, 0, 1, TimeUnit.SECONDS); scheduledThreadPool.scheduleWithFixedDelay(worker, 5, 10, TimeUnit.SECONDS); } //add some delay to let some threads spawn by scheduler try { Thread.sleep(30000); } catch (InterruptedException e) { e.printStackTrace(); } scheduledThreadPool.shutdown(); while(!scheduledThreadPool.isTerminated()){ //wait for all tasks to finish } LOG.info("Finished all threads"); } public Worker(String command){ this.command = command; } @Override public void run() { LOG.info(Thread.currentThread().getName()+" Start. Command = "+command); processCommand(); LOG.info(Thread.currentThread().getName()+" End."); } private void processCommand() { try { for(int i = 1000; i < 1200; i++){ LOG.info("sequence:" + i); } Thread.sleep(5000); } catch (InterruptedException e) { e.printStackTrace(); } } @Override public String toString(){ return this.command; } }
小结:
最终能实现负载均衡的作用,但是,性能上还有些欠缺。
当一台机死掉时,客户端将尝试不断链接,影响到数据传送到其它机子上。当死掉的机器恢复后,客户端备份的数据会重新发送到flume agent。数据正确性是达到了,但是,万一这个app当掉了,对应的日志信息不就丢了吗?这是一个问题,有待进一步的改进。