大意:给出平面上n个点,找一条直线,使得所有点在直线的同侧(也可以再直线上),且到直线的距离之和尽可能小。
思路:要求所有点在直线同侧,因此直线不能穿过凸包。不难发现,选择凸包上的边所在的直线是最优的。关键是求所有点到直线的距离,我们可以枚举每一条凸包上的边,把直线用点斜式表示出来,然后通过一般式求出所有点到直线的总距离。
由于所有点在Ax+By+C = 0的同一侧,所有的Ax0+By0+C的正负号相同。这样,我们在一开始输入时预处理所有x坐标与y坐标之和,就可以方便的算出最短距离啦。
#include <iostream> #include <cstdlib> #include <cstdio> #include <string> #include <cstring> #include <cmath> #include <vector> #include <queue> #include <stack> #include <algorithm> using namespace std; const double eps = 1e-10; const double PI = acos(-1.0); struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) { } bool operator < (const Point& a) const { if(a.x != x) return x < a.x; return y < a.y; } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); } Vector operator - (Point A, Point B) { return Vector(A.x-B.x, A.y-B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point &b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } double Area2(Point A, Point B, Point C) { return fabs(Cross(B-A, C-A)) / 2; } Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); } Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P-Q; double t = Cross(w, u) / Cross(v, w); return P+v*t; } bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1); double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } double PolygonArea(Point* p, int n) { double area = 0; for(int i = 1; i < n-1; i++) area += Cross(p[i]-p[0], p[i+1]-p[0]); return area/2; } bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0; } double DistanceToLine(Point P, Point A, Point B) { Vector v1 = B-A, v2 = P-A; return fabs(Cross(v1, v2)) / Length(v1); } double DistanceToSegment(Point P, Point A, Point B) { if(A == B) return Length(P-A); Vector v1 = B-A, v2 = P-A, v3 = P-B; if(dcmp(Dot(v1, v2) < 0)) return Length(v2); else if(dcmp(Dot(v1, v3) > 0)) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } int ConvexHull(Point *p, int n, Point *ch) //凸包 { sort(p, p+n); n = unique(p, p+n) - p; //去重 int m = 0; for(int i = 0; i < n; i++) { while(m > 1 && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } int k = m; for(int i = n-2; i >= 0; i--) { while(m > k && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } Point read_point() { Point A; scanf("%lf%lf", &A.x, &A.y); return A; } const int maxn = 10010; const double INF = 0x3f3f3f3f; int n, m; double sumx, sumy; Point P[maxn], ch[maxn]; void init() { sumx = 0, sumy = 0; } void read_case() { init(); scanf("%d", &n); for(int i = 0; i < n; i++) { P[i] = read_point(); sumx += P[i].x, sumy += P[i].y; } } /* (y-y1)/(y2-y1) = (x-x1)/(x2-x1) (y-y1)(x2-x1) = (x-x1)(y2-y1) (y2-y1)x-(x2-x1)y-x1(y2-y1)+y1(x2-x1) = 0 */ double cal(Point a, Point b) { double A, B, C; A = b.y-a.y, B = a.x-b.x, C = -a.y*(B)-a.x*(A); double ans = fabs(A*sumx + B*sumy + C*n) / sqrt(A*A+B*B); return ans; } void solve() { double Min = INF, ans = INF; read_case(); if(n <= 2) { printf("0.000\n"); return ;} m = ConvexHull(P, n, ch); for(int i = 0; i < m; i++) { Min = cal(ch[i], ch[(i+1)%m]); ans = min(ans, Min); } printf("%.3lf\n", ans / n); } int main() { int T, times = 0; scanf("%d", &T); while(T--) { printf("Case #%d: ", ++times); solve(); } return 0; }