子带编码(SBC)

子带编码(subband coding,SBC)的基本思想是:使用一组带通滤波器(band-pass filter,BPF)把输入音频信号的频带分成若干个连续的频段,每个频段称为子带。对每个子带中的音频信号采用单独的编码方案去编码。在信道上传送 时,将每个子带的代码复合起来。在接收端译码时,将每个子带的代码单独译码,然后把它们组合起来,还原成原来的音频信号。子带编码的方块图如图3-17所 示,图中的编码/译码器,可以采用ADPCM,APCM,PCM等。


图3-17 子带编码方块图

  采用对每个子带分别编码的好处有二个。第一,对每个子带信号分别进行自适应控制,量化阶(quantization step)的大小可以按照每个子带的能量电平加以调节。具有较高能量电平的子带用大的量化阶去量化,以减少总的量化噪声。第二,可根据每个子带信号在感觉 上的重要性,对每个子带分配不同的位数,用来表示每个样本值。例如,在低频子带中,为了保护音调和共振峰的结构,就要求用较小的量化阶、较多的量化级数, 即分配较多的位数来表示样本值。而话音中的摩擦音和类似噪声的声音,通常出现在高频子带中,对它分配较少的位数。
  音频频带的分割可以用树型结构的式样进行划分。首先把整个音频信号带宽分成两个相等带宽的子带:高频子带和低频子带。然后对这两个子带用同样的方法划分,形成4个子带。这个过程可按需要重复下去,以产生2K 个 子带,K为分割的次数。用这种办法可以产生等带宽的子带,也可以生成不等带宽的子带。例如,对带宽为4000 Hz的音频信号,当K=3时,可分为8个相等带宽的子带,每个子带的带宽为500 Hz。也可生成5个不等带宽的子带,分别为[0,500),[500,1000),[1000,2000),[2000,3000)和 [3000,4000]。
  把音频信号分割成相邻的子带分量之后,用2倍于子带带宽的采样频率对子带信号进行采样,就可以用它的样本值重构出原来的子带信号。例如,把4000 Hz带宽分成4个等带宽子带时,子带带宽为1000 Hz,采样频率可用2000 Hz,它的总采样率仍然是8000 Hz。
  由于分割频带所用的滤波器不是理想的滤波器,经过分带、编码、译码后合成的输出音频信号会有混迭效应。据有关资料的分析,采用正交镜象滤波器(quandrature mirror filter,QMF)来划分频带,混迭效应在最后合成时可以抵消。
  图3-18表示用QMF分割频带的子带编译码简化框图。图中表示用QMF把全带宽音频信号分割成两个等带宽子带的情况。hH (n)和hL (n)分别表示高通滤波器和低通滤波器,它们组成一对正交镜象滤波器。这两个滤波器也叫做分析滤波器。图3-18(b)是QMF简化的幅频特性。


(a) QMF分割频道方框图

 


(b) QMF幅频特性简化图

图3-18 采用QMF的子带编译码简化框图

  子带编码器SBC愈来愈受到重视。在中等速率的编码系统中,SBC的动态范围宽、音质高、成本低。使用子带编码技术的编译码器已开始用于话音存储转发 (voice store-and-forward)和话音邮件,采用2个子带和ADPCM的编码系统也已由CCITT作为G.722标准向全世界推荐使用。

你可能感兴趣的:(filter,存储)