我们在使用vc进行比较复杂的编程时,经常需要用到复杂的数组结构,并希望能实现动态管理。由于C++并不支持动态数组,MFC提供了一个CArray类来实现动态数组的功能。有效的使用CArray类,可以提高程序的效率。
MFC提供了一套模板库,来实现一些比较常见的数据结构如Array,List,Map。CArray即为其中的一个,用来实现动态数组的功能。
CArray是从CObject派生,有两个模板参数,第一个参数就是CArray类数组元素的变量类型,后一个是函数调用时的参数类型。
我们有一个类 class Object,我们要定义一个Object的动态数组,那么我们可以用以下两种方法:
CArray<Object,Object> Var1; CArray<Object,Object&> Var2;Var1与Var2哪一个的效率要高呢? Var2的效率要高。为什么呢?接下来我们对CArray的源代码做一个剖析就清楚了。
TYPE* m_pData; // 数据保存地址的指针 int m_nSize; // 用户当前定义的数组的大小 int m_nMaxSize; // 当前实际分配的数组的大小 int m_nGrowBy; // 分配内存时增长的元素个数首先来看它的构造函数,对成员变量进行了初始化。
CArray<TYPE, ARG_TYPE>::CArray() { m_pData = NULL; m_nSize = m_nMaxSize = m_nGrowBy = 0; }SetSize成员函数是用来为数组分配空间的,从这里着手,看CArray是如何对数据进行管理的。SetSize的函数定义如下:
void SetSize( int nNewSize, int nGrowBy = -1 );nNewSize 指定数组的大小
void CArray<TYPE, ARG_TYPE>::SetSize(int nNewSize, int nGrowBy) { if (nNewSize == 0) { // 第一种情况 // 当nNewSize为0时,需要将数组置为空, // 如果数组本身即为空,则不需做任何处理 // 如果数组本身已含有数据,则需要清除数组元素 if (m_pData != NULL) { //DestructElements 函数实现了对数组元素析构函数的调用 //不能使用delete m_pData 因为我们必须要调用数组元素的析构函数 DestructElements<TYPE>(m_pData, m_nSize); //现在才能释放内存 delete[] (BYTE*)m_pData; m_pData = NULL; } m_nSize = m_nMaxSize = 0; } else if (m_pData == NULL) { // 第二种情况 // 当m_pData==NULL时还没有为数组分配内存 //首先我们要为数组分配内存,sizeof(TYPE)可以得到数组元素所需的字节数 //使用new 数组分配了内存。注意,没有调用构造函数 m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)]; //下面的函数调用数组元素的构造函数 ConstructElements<TYPE>(m_pData, nNewSize); //记录下当前数组元素的个数 m_nSize = m_nMaxSize = nNewSize; } else if (nNewSize <= m_nMaxSize) { // 第三种情况 // 这种情况需要分配的元素个数比已经实际已经分配的元素个数要少 if (nNewSize > m_nSize) { // 需要增加元素的情况 // 与第二种情况的处理过程,既然元素空间已经分配, // 只要调用新增元素的构造函数就Ok ConstructElements<TYPE>(&m_pData[m_nSize], nNewSize-m_nSize); } else if (m_nSize > nNewSize) { // 现在是元素减少的情况,我们是否要重新分配内存呢? // No,这种做法不好,后面来讨论。 // 下面代码释放多余的元素,不是释放内存,只是调用析构函数 DestructElements<TYPE>(&m_pData[nNewSize], m_nSize-nNewSize); } m_nSize = nNewSize; } else { //这是最糟糕的情况,因为需要的元素大于m_nMaxSize, // 意味着需要重新分配内存才能解决问题 // 计算需要分配的数组元素的个数 int nNewMax; if (nNewSize < m_nMaxSize + nGrowBy) nNewMax = m_nMaxSize + nGrowBy; else nNewMax = nNewSize; // 重新分配一块内存 TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)]; //实现将已有的数据复制到新的的内存空间 memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE)); // 对新增的元素调用构造函数 ConstructElements<TYPE>(&pNewData[m_nSize], nNewSize-m_nSize); //释放内存 delete[] (BYTE*)m_pData; //将数据保存 m_pData = pNewData; m_nSize = nNewSize; m_nMaxSize = nNewMax; } }注意上面代码中标注为粗体的代码,它们实现了对象的构造与析构。如果我们只为对象分配内存,却没有调用构造与析构函数,会不会有问题呢?
class Object { public: Object(){ ID = 0; } ~Object(); protected: int ID; };我们只为Object类分配了空间,也能正常使用。但是,类的成员变量ID的值却是不定的,因为没有初始化。如果是一个更复杂的组合类,在构造函数中做了许多工作,那可能就不能正常运行了。
class Preson { public: Preson() { name = new char[10]; } ~Preson() { delete []name; } char* name; int age; }如果我没调用构造函数,那么对name操作肯定会出错。我们调用了构造函数后,删除元素时,如果不调用析构函数,那么,name所指向的内存不能正确释放,就会造成内存泄漏。
template<class TYPE> AFX_INLINE void AFXAPI ConstructElements(TYPE* pElements, int nCount) { // first do bit-wise zero initialization memset((void*)pElements, 0, nCount * sizeof(TYPE)); for (; nCount--; pElements++) ::new((void*)pElements) TYPE; }ConstructElements是一个模板函数。对构造函数的调用是通过标为黑体的代码实现的。可能很多人不熟悉new 的这种用法,它可以实现指定的内存空间中构造类的实例,不会再分配新的内存空间。类的实例产生在已经分配的内存中,并且new操作会调用对象的构造函数。因为vc中没有办法直接调用构造函数,而通过这种方法,巧妙的实现对构造函数的调用。
template<class TYPE> AFX_INLINE void AFXAPI DestructElements(TYPE* pElements, int nCount) { for (; nCount--; pElements++) pElements->~TYPE(); }DestructElements函数同样是一个模板函数,实现很简单,直接调用类的析构函数即可。
如果定义一个CArray对象 CArray<Object,Object&> myObject ,对myObject就可象数组一样,通过下标来访问指定的数组元素。通过[]来访问数组元素是如何实现的呢?其实只要重载运算符[]即可。
CArray[]有两种实现,区别在于返回值不同。我们来看看代码:
template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE CArray<TYPE, ARG_TYPE>::operator[](int nIndex) const { return GetAt(nIndex); } template<class TYPE, class ARG_TYPE> AFX_INLINE TYPE& CArray<TYPE, ARG_TYPE>::operator[](int nIndex) { return ElementAt(nIndex); }前一种情况是返回的对象的实例,后一种情况是返回对象的引用。分别调用不同的成员函数来实现。我们来比较一下这两个函数的实现(省略部分):
TYPE GetAt(int nIndex) const { ASSERT(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; } TYPE& ElementAt(int nIndex) { ASSERT(nIndex >= 0 && nIndex < m_nSize); return m_pData[nIndex]; }除了返回值不同,其它都一样,有什么区别吗?我们来看一个实例说明。
CArray<int,int&> arrInt; arrInt.SetSize(10); int n = arrInt.GetAt(0); int& l = arrInt.ElementAt(0); cout << arrInt[0] <<endl; n = 10; cout << arrInt[0] <<endl; l = 20; count << arrInt[0] << endl;结果会发现,n的变化不会影响到数组,而l的变化会改变数组元素的值。实际即是对C++中引用运算符的运用。
int CArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement)Add函数使用的参数是模板参数的二个参数,也就是说,这个参数的类型是我们来决定的,可以使用Object或Object&的方式。熟悉C++的朋友都知道,传引用的效率要高一些。如果是传值的话,会在堆栈中再产生一个新的对象,需要花费更多的时间。
template<class TYPE, class ARG_TYPE> AFX_INLINE int CArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement) { int nIndex = m_nSize; SetAtGrow(nIndex, newElement); return nIndex; }它实际是通过SetAtGrow函数来完成这个功能的,它的作用是设置指定元素的值。下面是SetAtGrow的代码:
template<class TYPE, class ARG_TYPE> void CArray<TYPE, ARG_TYPE>::SetAtGrow(int nIndex, ARG_TYPE newElement) { if (nIndex >= m_nSize) SetSize(nIndex+1, -1); m_pData[nIndex] = newElement; }SetAtGrow的实现也很简单,如果指定的元素已经存在,就把改变指定元素的值。如果指定的元素不存在,也就是 nIndex>=m_nSize的情况,就调用SetSize来调整数组的大小。