对称性的自发破缺

 
目录
对称性概念源于生活
对称性的基本概念
物理学中的对称性
因果性与对称性原理
对称性与守恒定律
对称性的自发破缺

原来具有较高对称性的系统出现不对称因素,其对称程度自发降低, 这种现象叫做对称性自发破缺。或者用物理语言叙述为:控制参量l跨越某临界值 时,系统原有对称性较高的状态失稳,新出现若干个等价的、对称性较低的稳定状态,系统将向其中之一过渡。

时空、不同种类的粒子、不同种类的相互作用、整个复杂纷纭的自然界,包括人类自身,都是对称性自发破缺的产物。对称性自发破缺对于认识自然的具有重要的意义。下面列举几个对称性自发破缺的事例:

1. 弱作用中宇称不守恒

实验已经证明,强作用下宇称守恒。这是与微观粒子的镜象对称性相联系的守恒定律。1956年前后,在对最轻的奇异粒子衰变过程的研究中遇到了“t ~ q疑难”。实验中发现的tq 粒子,它们质量相等,电荷相同,寿命也一样。但它们衰变的产物却不相同:

 或

               

实验结果的分析表明,3p 介子的总角动量为零,宇称为负。而2个p 介子的总角动量如为零,则宇称只能是正。因此,从质量、寿命和电荷来看, qt 似乎是同一种粒子。但从衰变行为来看,如果宇称是守恒量,则qt 就不可能是同一种粒子。

1956年,李政道和杨振宁解决了这个难题。他们提出弱相互作用过程中宇称不守恒的设想,吴健雄的钴60原子核b 蜕变实验验证了这个设想。1957年,吴健雄在10-2K下做原子核b 衰变实验,用核磁共振技术使核自旋按确定方向排列,观察b 衰变后的电子数分布,发现无镜像对称性 —— 证明了弱作用的宇称不守恒性。

1957年李政道和杨振宁获诺贝尔物理奖。

2. 贝纳德对流

1900年法国学者贝纳尔 (H.Benard)发现:从下面均匀加热水平容器中薄层液体时,若上下温差超过一临界值, 液体中突现类似蜂房的六边形网格, 液体的传热方式由热传导过渡到了对流,每个六角形中心的液体向上流动,边界处液体向下流动。这是对流与抑止因素(黏性和热扩散)竞争的结果。

对称性的自发破缺_第1张图片
对称性的自发破缺_第2张图片
对称性的自发破缺_第3张图片

3.意大利怪钟

这是1443年 paolo Uccello绘制的24小时逆时针方向运行的“怪钟”(如右图)。经济学家arthur Brian以此钟为例,论述经济领域中的正反馈现象。他说,1443年钟的设计尚未定型。一种表盘的设计用得愈多,就有更多人习惯于读它,以后它就被采用得愈多。最后形成现在的惯例。这就是从 正反馈到失稳,再从失稳到对称破缺的过程。

4. 重子——反重子的不对称

1933年Dirac理论预言: 每种粒子都有自己的反粒子, 正反粒子完全对称,也许在遥远的地方存在“反物质世界(anti-world)”。按照粒子物理学的分类,质子、中子以及它们的反粒子都属于重子,重子数B 是个守恒量。重子数 B 的定义是:每个重子的B =1, 每个反重子的B =-1。于是,在重子对产生和湮灭的过程中,重子数总和保持为零。各种天文观测表明: 宇宙线中反质子与质子数量之比< ;无论在太阳系内、银河系内、还是整个星系团的更大范围内,都未观察到湮没引起的强大g 射线。如果认为重子数守恒是一条在任何情况下都颠扑不破的定理,就只好认为,宇宙从它诞生时刻起就存在现今那样多的不为零的重子数,即重子与反重子一开始就不对称。目前,对正、反重子不对称比较可能的解释是,早期极高温的宇宙中存在着违反重子数守恒的过程。

1960~70年代Weinberg-Salam-Glashow弱电统一理论SU(5)大统一理论预言: 早期宇宙温度为 , 重子数不守恒。唯一可能的B不守恒过程是质子衰变: ,其寿命年。

1983年前后, 印度、日本相继宣布观测到了质子的衰变。1984年被美国 IMB协作组实验,在Ohio州cleveland市Morton Thiokol盐矿废井中(地下600多米)进行。探测器的中部纯水,矩形体外面布置了2048只光电倍增管,以探测 的切连科夫辐射。经204天的连续实验,均未测到有关事件。据此推算 年。1995年的实验结果是年。置信度> 90%,否定了前面的结果。! 反物质哪里去了?  宇宙早期重子从哪里来?

 

5. 生物界的左右不对称

大多数动物在外观上都具有左右对称性,但体内的器官就不那么对称了。如果深入到分子层次,就会发现一种普遍存在于生物界的更深刻的左右不对称性。1844年德国化学家E.E.Mitscherlich发现,酒石酸钠铵和葡萄酸钠铵的结晶具有相同的晶形,一样的化学性质,但溶液的旋光性不同。前者使偏振面右旋,后者无旋光性。1847年法国Louis pasteur发现了葡萄酸钠铵中有互为镜象对称的两种旋光异构物,其结构如右图所示。对此现象解释的信念是:光活性有与生命过程相联系的起源。

 

对称性的自发破缺_第4张图片

现代生物化学指出:有机化合物的旋光异构现象与有机分子中碳原子四个键的空间构形有关。用L(livo)和D(dextro)分别表示左、右型旋光异构体,(+)、(-)代表该物质的溶液的旋光方向,(-)表示左旋,(+)代表右旋。碳四面体的左右两种构型、甘油醛中四个基团L、D两种构型以及丙氨酸的旋光异构体简要图示如左图,它明显地反映出了其结构的左右不对称性。生命的基本物质是生物大分子,它包括蛋白质、核酸、多糖和脂类。其中蛋白质是生命功能的执行者,其分子是右氨基酸组成的长链。每种氨基酸都应有L、D两种旋光异构体。但实验证明组成生物蛋白质的20种氨基酸都是L型的,D型氨基酸只存在于细菌细胞壁和其它细菌产物中。核酸是遗传信息的携带者和传递者,分为核糖核酸(rNa)和脱氧核酸(DNa)两种。右下图是DNa分子双螺旋结构模型,通常是右旋的。这正是生物大分子的手性特征。生物体内化合物的这种左右不对称性正是生命力的体现。维持这种左右不平衡状态的是生物体内的酶,生物一旦死亡,酶便失去活力,造成左右不平衡的生物化学反应也就停止了。由此可见,生命与分子的不对称性息息相关。问题是地球上生命发源之初,左右对称性的破缺是怎样开始的?即分子手性的起源是什么?生物的起源是什么?这些都是有待人们去研究的

对称性的自发破缺_第5张图片
对称性的自发破缺_第6张图片

总之,时空、不同种类的粒子、不同种类的相互作用、整个复杂纷纭的自然界,包括人类自身,都是对称性自发破缺的产物。对称性破缺的机制是什么?实在现象中的对称性破缺与基本物理规律的对称性是否相容?不同层次的非对称性间如何关联?这些都是现代物理尚未解决的重要课题。

你可能感兴趣的:(对称性的自发破缺)