java内存管理机制

问题的引入:

问题一:
String str1 = "abc"; 
String str2 = "abc"; 
System.out.println(str1==str2); //true
问题二:
String str1 =new String ("abc"); 
String str2 =new String ("abc"); 
System.out.println(str1==str2); // false
问题三:
String s1 = "ja";
String s2 = "va";
String s3 = "java";
String s4 = s1 + s2;
System.out.println(s3 == s4);//false
System.out.println(s3.equals(s4));//true

1.Java中的堆和栈 
Java把内存划分成两种:一种是栈内存,一种是堆内存。

        在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。 
       当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。 

      堆内存用来存放由new创建的对象和数组。在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。 
      在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。 
  
具体的说:
栈与堆都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。
      Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。 
      栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量(,int, short, long, byte, float, double, boolean, char)和对象句柄。 
      栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义: 
int a = 3; 
int b = 3; 
编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。 

String是一个特殊的包装类数据。可以用: 
String str = new String("abc"); 
String str = "abc"; 
两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。 
而第二种是先在栈中创建一个对String类的对象引用变量str,然后查找栈中有没有存放"abc",如果没有,则将"abc"存放进栈,并令str指向”abc”,如果已经有”abc” 则直接令str指向“abc”。 

       比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。 
String str1 = "abc"; 
String str2 = "abc"; 
System.out.println(str1==str2); //true 
可以看出str1和str2是指向同一个对象的。 

String str1 =new String ("abc"); 
String str2 =new String ("abc"); 
System.out.println(str1==str2); // false 
用new的方式是生成不同的对象。每一次生成一个。 
       因此用第二种方式创建多个”abc”字符串,在内存中其实只存在一个对象而已. 这种写法有利与节省内存空间. 同时它可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于String str = new String("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。 
       另一方面, 要注意: 我们在使用诸如String str = "abc";的格式定义类时,总是想当然地认为,创建了String类的对象str。担心陷阱!对象可能并没有被创建!而可能只是指向一个先前已经创建的对象。只有通过new()方法才能保证每次都创建一个新的对象。由于String类的immutable性质,当String变量需要经常变换其值时,应该考虑使用StringBuffer类,以提高程序效率。

2.java中内存分配策略及堆和栈的比较 

2.1 内存分配策略

按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的. 
静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存储空间需求,因而在编译时就可以给他们分配固定的内存空间.这种分配策略要求程序代码中不允许有可变数据结构(比如可变数组)的存在,也不允许有嵌套或者递归的结构出现,因为它们都会导致编译程序无法计算准确的存储空间需求. 
栈式存储分配也可称为动态存储分配,是由一个类似于堆栈的运行栈来实现的.和静态存储分配相反,在栈式存储方案中,程序对数据区的需求在编译时是完全未知的,只有到运行的时候才能够知道,但是规定在运行中进入一个程序模块时,必须知道该程序模块所需的数据区大小才能够为其分配内存.和我们在数据结构所熟知的栈一样,栈式存储分配按照先进后出的原则进行分配。 
静态存储分配要求在编译时能知道所有变量的存储要求,栈式存储分配要求在过程的入口处必须知道所有的存储要求,而堆式存储分配则专门负责在编译时或运行时模块入口处都无法确定存储要求的数据结构的内存分配,比如可变长度串和对象实例.堆由大片的可利用块或空闲块组成,堆中的内存可以按照任意顺序分配和释放. 


2.2 堆和栈的比较 
上面的定义从编译原理的教材中总结而来,除静态存储分配之外,都显得很呆板和难以理解,下面撇开静态存储分配,集中比较堆和栈: 
从堆和栈的功能和作用来通俗的比较,堆主要用来存放对象的,栈主要是用来执行程序的.而这种不同又主要是由于堆和栈的特点决定的: 在编程中,例如C/C++中,所有的方法调用都是通过栈来进行的,所有的局部变量,形式参数都是从栈中分配内存空间的。实际上也不是什么分配,只是从栈顶向上用就行,就好像工厂中的传送带(conveyor belt)一样,Stack Pointer会自动指引你到放东西的位置,你所要做的只是把东西放下来就行.退出函数的时候,修改栈指针就可以把栈中的内容销毁.这样的模式速度最快, 当然要用来运行程序了.需要注意的是,在分配的时候,比如为一个即将要调用的程序模块分配数据区时,应事先知道这个数据区的大小,也就说是虽然分配是在程序运行时进行的,但是分配的大小多少是确定的,不变的,而这个"大小多少"是在编译时确定的,不是在运行时. 
堆是应用程序在运行的时候请求操作系统分配给自己内存,由于从操作系统管理的内存分配,所以在分配和销毁时都要占用时间,因此用堆的效率非常低.但是堆的优点在于,编译器不必知道要从堆里分配多少存储空间,也不必知道存储的数据要在堆里停留多长的时间,因此,用堆保存数据时会得到更大的灵活性。事实上,面向对象的多态性,堆内存分配是必不可少的,因为多态变量所需的存储空间只有在运行时创建了对象之后才能确定.在C++中,要求创建一个对象时,只需用 new命令编制相关的代码即可。执行这些代码时,会在堆里自动进行数据的保存.当然,为达到这种灵活性,必然会付出一定的代价:在堆里分配存储空间时会花掉更长的时间!这也正是导致我们刚才所说的效率低的原因,看来列宁同志说的好,人的优点往往也是人的缺点,人的缺点往往也是人的优点(晕~). 

2.3 JVM中的堆和栈 
JVM是基于堆栈的虚拟机.JVM为每个新创建的线程都分配一个堆栈.也就是说,对于一个Java程序来说,它的运行就是通过对堆栈的操作来完成的。堆栈以帧为单位保存线程的状态。JVM对堆栈只进行两种操作:以帧为单位的压栈和出栈操作。 
我们知道,某个线程正在执行的方法称为此线程的当前方法.我们可能不知道,当前方法使用的帧称为当前帧。当线程激活一个Java方法,JVM就会在线程的 Java堆栈里新压入一个帧。这个帧自然成为了当前帧.在此方法执行期间,这个帧将用来保存参数,局部变量,中间计算过程和其他数据.这个帧在这里和编译原理中的活动纪录的概念是差不多的. 
从Java的这种分配机制来看,堆栈又可以这样理解:堆栈(Stack)是操作系统在建立某个进程时或者线程(在支持多线程的操作系统中是线程)为这个线程建立的存储区域,该区域具有先进后出的特性。 
每一个Java应用都唯一对应一个JVM实例,每一个实例唯一对应一个堆。应用程序在运行中所创建的所有类实例或数组都放在这个堆中,并由应用所有的线程共享.跟C/C++不同,Java中分配堆内存是自动初始化的。Java中所有对象的存储空间都是在堆中分配的,但是这个对象的引用却是在堆栈中分配,也就是说在建立一个对象时从两个地方都分配内存,在堆中分配的内存实际建立这个对象,而在堆栈中分配的内存只是一个指向这个堆对象的指针(引用)而已。

 JVM运行时,将内存分为堆和栈,堆中存放的是创建的对象,JAVA字符串对象内存实现时,在堆中开辟了一快很小的内存,叫字符串常量池,用来存放特定的字符串对象。 
关于String对象的创建,两种方式是不同的,第一种不用new的简单语法,即 
String s1="JAVA"; 
创建步骤是先看常量池中有没有与"JAVA"相同的的字符串对象,如果有,将s1指向该对象,若没有,则创建一个新对象,并让s1指向它。 
第二种是new语法 
String s2="JAVA"; 
这种语法是在堆而不是在常量池中创建对象,并将s2指向它,然后去字符串常量池中看看,是否有与之相同的内容的对象,如果有,则将new出来的字符串对象与字符串常量池中的对象联系起来,如果没有,则在字符串常量池中再创建一个包含该内容的字符串对象,并将堆内存中的对象与字符串常量池中新建出来的对象联系起来。 
这就是字符串的一次投入,终生回报的内存机制,对字符串的比较带来好处。


3.Java内存管理机制

在C++ 语言中,如果需要动态分配一块内存,程序员需要负责这块内存的整个生命周期。从申请分配、到使用、再到最后的释放。这样的过程非常灵活,但是却十分繁琐,程序员很容易由于疏忽而忘记释放内存,从而导致内存的泄露。 Java 语言对内存管理做了自己的优化,这就是垃圾回收机制。 Java 的几乎所有内存对象都是在堆内存上分配(基本数据类型除外),然后由 GC ( garbage collection)负责自动回收不再使用的内存。

上面是Java 内存管理机制的基本情况。但是如果仅仅理解到这里,我们在实际的项目开发中仍然会遇到内存泄漏的问题。也许有人表示怀疑,既然 Java 的垃圾回收机制能够自动的回收内存,怎么还会出现内存泄漏的情况呢?这个问题,我们需要知道 GC 在什么时候回收内存对象,什么样的内存对象会被 GC 认为是“不再使用”的。

Java中对内存对象的访问,使用的是引用的方式。在 Java 代码中我们维护一个内存对象的引用变量,通过这个引用变量的值,我们可以访问到对应的内存地址中的内存对象空间。在 Java 程序中,这个引用变量本身既可以存放堆内存中,又可以放在代码栈的内存中(与基本数据类型相同)。 GC 线程会从代码栈中的引用变量开始跟踪,从而判定哪些内存是正在使用的。如果 GC 线程通过这种方式,无法跟踪到某一块堆内存,那么 GC 就认为这块内存将不再使用了(因为代码中已经无法访问这块内存了)。

java内存管理机制_第1张图片

通过这种有向图的内存管理方式,当一个内存对象失去了所有的引用之后,GC 就可以将其回收。反过来说,如果这个对象还存在引用,那么它将不会被 GC 回收,哪怕是 Java 虚拟机抛出 OutOfMemoryError 。


3.1Java内存泄露

一般来说内存泄漏有两种情况。一种情况如在C/C++ 语言中的,在堆中的分配的内存,在没有将其释放掉的时候,就将所有能访问这块内存的方式都删掉(如指针重新赋值);另一种情况则是在内存对象明明已经不需要的时候,还仍然保留着这块内存和它的访问方式(引用),即对于程序而言已经无用的内存未能及时释放。第一种情况,在 Java 中已经由于垃圾回收机制的引入,得到了很好的解决。所以, Java 中的内存泄漏,主要指的是第二种情况。

    可能光说概念太抽象了,大家可以看一下这样的例子:

Vector v = new  Vector( 10 );  

for  ( int  i = 1 ;i < 100 ; i ++ ){  

Object o = new  Object();  

v.add(o);  

o = null ;  

在这个例子中,代码栈中存在Vector 对象的引用 v 和 Object 对象的引用 o 。在 For 循环中,我们不断的生成新的对象,然后将其添加到 Vector 对象中,之后将 o 引用置空。问题是当 o 引用被置空后,如果发生 GC ,我们创建的 Object 对象是否能够被 GC 回收呢?答案是否定的。因为, GC 在跟踪代码栈中的引用时,会发现 v 引用,而继续往下跟踪,就会发现 v 引用指向的内存空间中又存在指向 Object 对象的引用。也就是说尽管 o 引用已经被置空,但是 Object 对象仍然存在其他的引用,是可以被访问到的,所以 GC 无法将其释放掉。如果在此循环之后, Object 对象对程序已经没有任何作用,那么我们就认为此 Java 程序发生了内存泄漏。

尽管对于C/C++ 中的内存泄露情况来说, Java 内存泄露导致的破坏性小,除了少数情况会出现程序崩溃的情况外,大多数情况下程序仍然能正常运行。但是,在移动设备对于内存和 CPU都有较严格的限制的情况下, Java 的内存溢出会导致程序效率低下、占用大量不需要的内存等问题。这将导致整个机器性能变差,严重的也会引起抛出 OutOfMemoryError ,导致程序崩溃。


3.2一般情况下内存泄漏的避免

在不涉及复杂数据结构的一般情况下,Java 的内存泄露表现为一个内存对象的生命周期超出了程序需要它的时间长度。我们有时也将其称为“对象游离”。

例如:

public class FileSearch{  

      private byte [] content;  

      private File mFile;  

     public FileSearch(File file){  

      mFile = file;  

      }  

     public boolean hasString(String str){  

         int size = getFileSize(mFile);  

        content =  new  byte [size];  

         loadFile(mFile, content);  

         String s =  new String(content);  

         return s.contains(str);  

     }  

在这段代码中,FileSearch 类中有一个函数 hasString ,用来判断文档中是否含有指定的字符串。流程是先将mFile 加载到内存中,然后进行判断。但是,这里的问题是,将 content 声明为了实例变量,而不是本地变量。于是,在此函数返回之后,内存中仍然存在整个文件的数据。而很明显,这些数据我们后续是不再需要的,这就造成了内存的无故浪费。

要避免这种情况下的内存泄露,要求我们以C/C++ 的内存管理思维来管理自己分配的内存。第一,是在声明对象引用之前,明确内存对象的有效作用域。在一个函数内有效的内存对象,应该声明为 local 变量,与类实例生命周期相同的要声明为实例变量……以此类推。第二,在内存对象不再需要时,记得手动将其引用置空。

复杂数据结构中的内存泄露问题

在实际的项目中,我们经常用到一些较为复杂的数据结构用于缓存程序运行过程中需要的数据信息。有时,由于数据结构过于复杂,或者我们存在一些特殊的需求(例如,在内存允许的情况下,尽可能多的缓存信息来提高程序的运行速度等情况),我们很难对数据结构中数据的生命周期作出明确的界定。这个时候,我们可以使用Java 中一种特殊的机制来达到防止内存泄露的目的。

之前我们介绍过,Java 的 GC 机制是建立在跟踪内存的引用机制上的。而在此之前,我们所使用的引用都只是定义一个“ Object o; ”这样形式的。事实上,这只是 Java 引用机制中的一种默认情况,除此之外,还有其他的一些引用方式。通过使用这些特殊的引用机制,配合 GC 机制,就可以达到一些我们需要的效果。

 

4.Java里的四种引用类型(强引用、软引用、弱引用、虚引用)及在内存释放上的区别

http://blog.csdn.net/u012403246/article/details/45741445

http://blog.csdn.net/u011860731/article/details/48714321

http://www.cnblogs.com/lwbqqyumidi/p/4151833.html

 代码演示:

package cn.bjca.fourreference;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
import java.lang.ref.WeakReference;

public class test {

	public static void main(String args[]) throws Exception{
		soft();
	}
	/** -- -------------软引用-----------------
	 * 只有当内存不够的时候,才回收这类内存,因此在内存足够的时候,它们通常不被回收 
	 *  无论是否发送GC,执行结果都是: 
	 *  java.lang.Object@892b7c2
	 *  null 
	 *  java.lang.Object@892b7c2
	 *  null 
	 *  可以看到:只有发送了GC,将对于从内存中释放的时候,JVM才会将reference假如引用队列
	 */ 
	public static void soft() throws Exception { 
		Object obj = new Object(); 
		ReferenceQueue refQueue = new ReferenceQueue(); 
		SoftReference softRef = new SoftReference(obj, refQueue); 
		System.out.println(softRef.get()); // java.lang.Object@f9f9d8 
		System.out.println(refQueue.poll());// null 
		// 清除强引用,触发GC 
		obj = null; System.gc(); 
		System.out.println(softRef.get()); 
		Thread.sleep(200); 
		System.out.println(refQueue.poll()); 
	}
	
	/** --------------------弱引用-----------------------
	 *  弱引用:当发生GC的时候,Weak引用对象总是会内回收回收,因此Weak引用对象会更容易、更快被GC回收
	 *  Weak引用对象常常用于Map数据结构中,引用占用内存空间较大的对象 
	 *  如果不发生垃圾回收: 
	 *  java.lang.Object@f9f9d8 
	 *  null 
	 *  java.lang.Object@f9f9d8 
	 *  null 
	 *  如果发生垃圾回收: 
	 *  java.lang.Object@f9f9d8 
	 *  null 
	 *  null 
	 *  java.lang.ref.WeakReference@422ede 
	 */ 
	public static void weak() throws Exception { 
		Object obj = new Object(); 
		ReferenceQueue refQueue = new ReferenceQueue(); 
		WeakReference weakRef = new WeakReference(obj, refQueue); 
		System.out.println(weakRef.get()); // java.lang.Object@f9f9d8 
		System.out.println(refQueue.poll());// null 
		// 清除强引用,触发GC 
		obj = null; 
		System.gc(); 
		System.out.println(weakRef.get()); // 这里特别注意:poll是非阻塞的,remove是阻塞的. 
		// JVM将弱引用放入引用队列需要一定的时间,所以这里先睡眠一会儿
		// System.out.println(refQueue.poll());// 这里有可能是null 
		Thread.sleep(200); 
		System.out.println(refQueue.poll()); 
		// System.out.println(refQueue.poll());
		//这里一定是null,因为已经从队列中移除 
		System.out.println(refQueue.remove());
	}

	/** ---------------------虚引用---------------------
	 *
	 */ 
	public static void PhantomReference() throws Exception { 
		Object obj = new Object(); 
		ReferenceQueue<Object> refQueue = new ReferenceQueue<Object>(); 
		PhantomReference<Object> phanRef = new PhantomReference<Object>(obj, refQueue); 
		System.out.println(phanRef.get()); 
		System.out.println(refQueue.poll()); 
		obj = null; 
		System.gc(); 
		System.out.println(phanRef.get()); 
		System.out.println(refQueue.poll()); 
	}
	

}


 

你可能感兴趣的:(java内存管理机制)