后缀树和后缀数组 [3 两个字符串的最长公共子串]

 
后缀树和后缀数组 [3 两个字符串的最长公共子串] 
8.4    两个字符串的最长公共子串
两个串的最长公共字串是相对于多个串要简单一点,不需要二分A。只需要判断相邻两个Height是不是分属两个字符串即可。

8.4.1   实例
PKU JudgeOnline, 2774, Long Long Message.

8.4.2   问题描述
给两个小写ASCII字母组成的字符串,求出它们最大公共子串的长度。

相比PKUJudgeOnline, 3450, Corporate Identity,这个题目比较简单,而且测试数据并不强,没有测出求Height数组的一个错误。

8.4.3   输入
yeshowmuchiloveyoumydearmotherreallyicannotbelieveit

yeaphowmuchiloveyoumydearmother

8.4.4   输出
27

8.4.5   分析
采用的算法是DC3算法,源程序可以在[i]下载。该算法实现得相当巧妙,所以只添加注释和计算height的函数,就可以使用了。

8.4.6   程序

view plaincopy to clipboardprint?
#include <stdio.h>   
#include <iostream>   
#include <stdlib.h>   
using namespace std;  
inline bool leq(int a1, int a2,   int b1, int b2) { // lexic. orderfor pairs   
  return(a1< b1 || a1 == b1 && a2 <= b2);  
}                                                  // and triples   
inline bool leq(int a1, int a2, int a3,   int b1, int b2, int b3) {  
  return(a1< b1 || a1 == b1 && leq(a2,a3, b2,b3));  
}  
// stably sort a[0..n-1] to b[0..n-1] with keys in 0..K fromr   
static void radixPass(int* a, int* b, int* r, int n, int K)  
{// count occurrences   
  int* c = new int[K + 1];                          // counter array   
  for (int i = 0;  i<= K;  i++) c[i] = 0;         // resetcounters   
  for (int i = 0;  i< n;  i++) c[r[a[i]]]++;    // countoccurences   
  for (int i = 0, sum = 0; i <= K;  i++) { // exclusive prefix sums   
     int t =c[i];  c[i] = sum;  sum += t;  
  }  
  for (int i = 0;  i< n;  i++) b[c[r[a[i]]]++] =a[i];      //sort   
  delete [] c;  
}  
   
// find the suffix array SA of s[0..n-1] in {1..K}^n   
// require s[n]=s[n+1]=s[n+2]=0, n>=2   
void suffixArray(int* s, int* SA, int n, int K) {  
  intn0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;  
  //n0是字符串中模为的下标的个数,n1,n2依此类推   
  int* s12  = new int[n02 + 3]; s12[n02]= s12[n02+1]= s12[n02+2]=0;  
  int* SA12 = new int[n02 + 3];SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;  
  int* s0   = new int[n0];  
  int* SA0  = new int[n0];  
   
  // generatepositions of mod 1 and mod  2 suffixes   
  // the"+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1   
  for (int i=0, j=0; i < n+(n0-n1);  i++) if (i%3 != 0) s12[j++] = i;  
  //将所有模不为的下标存入s12中   
   
  // lsb radix sortthe mod 1 and mod 2 triples   
  radixPass(s12 , SA12, s+2, n02, K);  
  radixPass(SA12, s12 , s+1, n02, K);   
  radixPass(s12 , SA12, s  , n02, K);  
  //radixPass实际是一个计数排序   
  //对后缀的前三个字符进行三次计数排序完成了对SA12数组的基数排序   
  //这个排序是初步的,没有将SA12数组真正地排好序,因为:   
  //若SA12数组中几个后缀的前三个字符相等,则起始位置靠后的排在后面   
   
  // findlexicographic names of triples   
  int name = 0,c0 = -1, c1 = -1, c2 = -1;  
  for (int i = 0;  i< n02;  i++) {  
    if(s[SA12[i]] != c0 || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2) {  
      name++; c0 = s[SA12[i]];  c1 =s[SA12[i]+1];  c2 = s[SA12[i]+2];  
    }  
     //name是计算后缀数组SA12中前三个字符不完全相同的后缀个数   
     //这么判断的原因是:SA12有序,故只有相邻后缀的前三个字符才可能相同   
    if (SA12[i]% 3 == 1) { s12[SA12[i]/3]      = name; }// left half   
    else                  { s12[SA12[i]/3 + n0] = name;} // right half   
     //SA12[i]模不是就是,s12保存的是后缀数组SA12中前三个字符的排位   
  }  
   
  // recurse if namesare not yet unique   
  if (name <n02) {  
     //如果name等于n02,意味着SA12前三个字母均不相等,即SA12已有序   
     //否则,根据s12的后缀数组与SA12等价,对s12的后缀数组进行排序即可   
    suffixArray(s12, SA12, n02, name);  
    // store uniquenames in s12 using the suffix array   
    for (int i = 0;  i< n02;  i++) s12[SA12[i]] = i + 1;  
  } else // generate the suffix array of s12 directly   
    for (int i = 0;  i< n02;  i++) SA12[s12[i] - 1] = i;  
  //s12保存的是后缀数组SA12中前三个字符的排位   
  //在所有后缀前三个字符都不一样的情况下,s12就是后缀的排位   
   
  //至此SA12排序完毕   
  //SA12[i]是第i小的后缀的序号(序号从到n02),s12[i]是序号为i的后缀的排位   
  //使用后缀序号而不是实际位置的原因是递归调用suffixArray时不能保留该信息   
   
  // stably sort themod 0 suffixes from SA12 by their first character   
  for (int i=0, j=0; i < n02;  i++) if (SA12[i] < n0) s0[j++] = 3*SA12[i];  
  //将SA12中所有的模为的后缀的实际位置减去按序存储在s0中   
  //注意后缀序号到实际位置的转化需将前者乘   
  //这意味着首先已经利用模为的后缀对SA0进行了初步排序   
  //只需要采用一次计数排序即可对SA0完成基数排序的最后一步   
  radixPass(s0, SA0, s, n0, K);  
   
  //最后一步,对有序表SA12和SA0进行归并   
  // merge sorted SA0suffixes and sorted SA12 suffixes   
  for (int p=0, t=n0-n1,  k=0;  k < n; k++) {  
#define GetI() (SA12[t] < n0 ? SA12[t] * 3 + 1 : (SA12[t] - n0) *3 + 2)   
    int i =GetI(); // pos of current offset 12 suffix   
    int j =SA0[p]; // pos of current offset 0  suffix   
    if (SA12[t]< n0 ?  
        leq(s[i],       s12[SA12[t] + n0], s[j],       s12[j/3]) :  
        leq(s[i],s[i+1],s12[SA12[t]-n0+1],s[j],s[j+1],s12[j/3+n0]))  
    { // suffix fromSA12 is smaller   
      SA[k] = i;  t++;  
      if (t ==n02) { // done --- only SA0 suffixes left   
        for(k++;  p < n0;  p++, k++) SA[k] = SA0[p];  
      }  
    } else {  
      SA[k] = j;  p++;  
      if (p ==n0)  { // done--- only SA12 suffixes left   
        for(k++;  t < n02;  t++, k++) SA[k] = GetI();  
      }  
    }   
  }  
  delete []s12; delete [] SA12; delete[] SA0; delete [] s0;  
}  
void suffixArrayHeight(int *s, int *SA, int n, int K, int *rank, int *height)  
{  
    int i, j,h;  
     for(i = 0;i < n; i++){  
         rank[SA[i]] = i;  
         //rank和SA互逆,即SA[rank[i]] == i&&rank[SA[i]] == i   
     }  
     h = 0;  
     for(i = 0;i < n; i++){  
         if(rank[i]== 0){  
            height[rank[i]] = 0;  
         }else{  
              j = SA[rank[i] - 1];  
              //如果用前缀的第一个字符的下标来标识前缀   
              //那么,j是前缀i == SA[rank[i]]的左邻前缀   
              while(s[i+ h] == s[j + h]){  
                   h++;  
                   //如果没有关于h[i]和h[i+1]的大小关系的定理,h需要从开始   
              }  
              height[rank[i]] = h;  
              //求出了h[i]的值   
              if(h> 0)  
              {  
                   h--;  
                   //h[i+1]的值大于或等于h[i]-1   
              }  
        }  
     }  
}  
#define maxNum (100002 * 2 + 3)   
/* 
int s[maxNum]; 
int SA[maxNum]; 
int rank[maxNum]; 
int height[maxNum];*/  
bool isPermutation(int *SA, int n) {  
  bool *seen = new bool[n];  
  for (int i = 0;  i< n;  i++) seen[i] = 0;  
  for (int i = 0;  i< n;  i++) seen[SA[i]] = 1;  
  for (int i = 0;  i< n;  i++) if(!seen[i]) return 0;  
  return 1;  
}  
bool sleq(int *s1, int *s2) {  
  if (s1[0]< s2[0]) return 1;  
  if (s1[0]> s2[0]) return 0;  
  returnsleq(s1+1, s2+1);  
}  
// is SA a sorted suffix array for s?   
bool isSorted(int *SA, int *s, int n) {  
  for (int i = 0;  i< n-1;  i++) {  
    if(!sleq(s+SA[i], s+SA[i+1])) return 0;  
  }  
  //每一个后缀都比其后的那个后缀小,那么后缀数组是升序的   
  return1;   
}  
#define Assert(c) if(!(c))\   
  {cout << "\nAssertionviolation " << __FILE__ << ":"<< __LINE__ << endl;}  
int main()  
{  
     int i, j;  
     int n;  
     int b = 'z' - 'a' + 2;  
      
     int* s;  
     int* SA;  
     int* rank;  
     int*height;  
     charstr1[100002];  
     charstr2[100002];  
     intlength1;  
     intlength2;  
     int max;  
     scanf("%s%s",str1, str2);  
     length1 = strlen(str1);  
     length2 = strlen(str2);  
     n = length1 + length2 + 1;   
     s = new int[n+3];  
     SA = new int[n+3];  
     rank = new int[n];  
     height = newint[n];  
     s[n] = s[n+1] = s[n+2] = SA[n] = SA[n+1] =SA[n+2] = 0;  
     for(i = 0;i < length1; i++){  
         s[i] = str1[i] - 'a' + 1;  
     }  
     s[i++] = 27;  
     for(j = 0;j < length2; j++){  
         s[i++] = str2[j] - 'a' + 1;  
     }  
     suffixArray(s, SA, n, b);  
     //构建后缀数组   
     /* 
     Assert(s[n] == 0); 
     Assert(s[n+1] ==0); 
     //s是字符串数组,求后缀数组时不应被改变 
     Assert(SA[n] == 0); 
     Assert(SA[n+1] ==0); 
     //长度为n的字符串有n个后缀 
     Assert(isPermutation(SA,n)); 
     //后缀数组是以第i(0<= i < n)个字符作为起点的后缀的数组 
     Assert(isSorted(SA,s, n)); 
     //后缀数组必须有序 
     */  
     suffixArrayHeight(s, SA, n, b, rank,height);  
     max = 0;  
     for(i = 1;i < n; i++){  
         if((SA[i]< length1 && SA[i - 1] > length1)||  
         (SA[i] > length1 && SA[i -1] < length1))  
        {  
            if(max< height[i])  
                max = height[i];  
        }  
     }  
     cout << max << endl;  
     delete []s; delete [] SA; delete[] rank; delete [] height;  
}  


 

你可能感兴趣的:(后缀树和后缀数组 [3 两个字符串的最长公共子串])