据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?
解题思路1:
设舀7两的勺子为A和舀11两的勺子为B。要解决此题须使A不断舀酒倒入B中,B满后再倒入酒缸,如此反复即可。
解题思路2:
本题实质是计算下列式子:2*7-11=3,2*7+3-11=6,1*7+6-11=2,2*7+2-11=5,1*7+5-11=1,2*7+1-11=4,1*7+4-11=0。即A、B两个勺子可量出1-6两酒,加上7、11,A、B两个勺子可量出1-18两酒
参考答案:
设舀7两的勺子为A和舀11两的勺子为B。倒法如下:
A B
7 0
0 7 A->B
7 7
3 11 A->B
3 0
0 3 A->B (2*7-11=3)
7 3
0 10 A->B
7 10
6 11 A->B
6 0
0 6 A->B (2*7+3-11=6)
7 6
2 11 A->B (1*7+6-11=2)
A勺中有2两酒。
有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜子的布质、大小完全相同,而每对袜子都有一张商标纸连着。两位盲人不小心将八对袜子混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?
解题思路1:
把八对袜子商标纸撕开一人一半平分,袜子不分左右。但是怎么穿呢?
解题思路2:
将八对袜子淋湿,在太阳下晒,先干的是黑袜,后干的是白袜。再平分。
解题思路3:
在太阳下晒,热的是黑袜,稍凉的是白袜。再平分。
12个球和一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)
参考答案:
首先,把12个小球分成三等份,每份四只。
拿出其中两份放到天平两侧称(第一次)
情况一:天平是平衡的。
那么那八个拿上去称的小球都是正常的,特殊的在四个里面。
把剩下四个小球拿出三个放到一边,另一边放三个正常的小球(第二次)
如天平平衡,特殊的是剩下那个。
如果不平衡,在天平上面的那三个里。而且知道是重了还是轻了。
剩下三个中拿两个来称,因为已经知道重轻,所以就可以知道特殊的了。(第三次)
情况二:天平倾斜。
特殊的小球在天平的那八个里面。
把重的一侧四个球记为A1A2A3A4,轻的记为B1B2B3B4。
剩下的确定为四个正常的记为C。
把A1B2B3B4放到一边,B1和三个正常的C小球放一边。(第二次)
情况一:天平平衡了。
特殊小球在A2A3A4里面,而且知道特殊小球比较重。
把A2A3称一下,就知道三个里面哪个是特殊的了。(第三次)
情况二:天平依然是A1的那边比较重。
特殊的小球在A1和B1之间。
随便拿一个和正常的称,就知道哪个特殊了。(第三次)
情况三:天平反过来,B1那边比较重了。
特殊小球在B2B3B4中间,而且知道特殊小球比较轻。
把B2B3称一下,就知道哪个是特殊的了。(第三次)