*/
程序及代码:
#ifndef BTREE_H_INCLUDED #define BTREE_H_INCLUDED #define MaxSize 100 #include<stdio.h> #include<malloc.h> typedef char ElemType; typedef struct node { ElemType data; //数据元素 struct node *lchild; //指向左孩子 struct node *rchild; //指向右孩子 } BTNode; void CreateBTNode(BTNode *&b,char *str); //由str串创建二叉链 void DispBTNode(BTNode *b); //以括号表示法输出二叉树 void DestroyBTNode(BTNode *&b); //销毁二叉树 BTNode *CreateBT1(char *pre,char *in,int n); #endif // BTREE_H_INCLUDED
#include "list.h" void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链 { BTNode *St[MaxSize],*p=NULL; int top=-1,k,j=0; char ch; b=NULL; //建立的二叉树初始时为空 ch=str[j]; while (ch!='\0') //str未扫描完时循环 { switch(ch) { case '(': top++; St[top]=p; k=1; break; //为左节点 case ')': top--; break; case ',': k=2; break; //为右节点 default: p=(BTNode *)malloc(sizeof(BTNode)); p->data=ch; p->lchild=p->rchild=NULL; if (b==NULL) //p指向二叉树的根节点 b=p; else //已建立二叉树根节点 { switch(k) { case 1: St[top]->lchild=p; break; case 2: St[top]->rchild=p; break; } } } j++; ch=str[j]; } } void DispBTNode(BTNode *b) //以括号表示法输出二叉树 { if (b!=NULL) { printf("%c",b->data); if (b->lchild!=NULL || b->rchild!=NULL) { printf("("); DispBTNode(b->lchild); if (b->rchild!=NULL) printf(","); DispBTNode(b->rchild); printf(")"); } } } void DestroyBTNode(BTNode *&b) //销毁二叉树 { if (b!=NULL) { DestroyBTNode(b->lchild); DestroyBTNode(b->rchild); free(b); } } BTNode *CreateBT1(char *pre,char *in,int n)//pre存放先序序列,in存放中序序列,n为二叉树结点个数,本算法执行后返回构造的二叉链的根结点指针 { BTNode *s; char *p; int k; if (n<=0) return NULL; s=(BTNode *)malloc(sizeof(BTNode)); //创建二叉树结点*s s->data=*pre; for (p=in; p<in+n; p++) //在中序序列中找等于*ppos的位置k if (*p==*pre) //pre指向根结点 break; //在in中找到后退出循环 k=p-in; //确定根结点在in中的位置 s->lchild=CreateBT1(pre+1,in,k); //递归构造左子树 s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树 return s; }
#include "list.h" int main() { ElemType pre[]="ABDGCEF",in[]="DGBAECF"; BTNode *b1; b1=CreateBT1(pre,in,7); printf("b1:"); DispBTNode(b1); printf("\n"); return 0; }运行结果:
知识点总结:
由先序序列和中序序列可以唯一确定后序序列
由中序序列和后序序列唯一可以确定先序序列
其中也运用了递归的调用
学习心得:
递归思想一定要灵活运用,一定要熟能生巧。