OpenCV 矩阵操作 CvMat(二)

http://blog.csdn.net/schoolers/archive/2009/11/16/4816721.aspx

 

1.初始化矩阵:

// 方式一、逐点赋值式:

CvMat* mat = cvCreateMat(2, 2, CV_64FC1);

cvZero(mat);

cvmSet(mat, 0, 0, 1);

cvmSet(mat, 0, 1, 2);

cvmSet(mat, 1, 0, 3);

cvmSet(mat, 2, 2, 4);

cvReleaseMat(&mat);

 

// 方式二、连接现有数组式:

double a[] = { 1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12

};

CvMat mat = cvMat(3, 4, CV_64FC1, a); // 64FC1 for double

// 不需要cvReleaseMat,因为数据内存分配是由double定义的数组进行的。

 

 

2. IplImage cvMat的转换

// 方式一、cvGetMat方式:

CvMat mathdr, *mat = cvGetMat(img, &mathdr);

 

// 方式二、cvConvert方式:

CvMat *mat = cvCreateMat(img->height, img->width, CV_64FC3);

cvConvert(img, mat);

// #define cvConvert(src, dst) cvConvertScale( (src), (dst), 1, 0)

 

3.cvArr(IplImage或者cvMat)转化为cvMat

// 方式一、cvGetMat方式:

int coi = 0;

cvMat *mat = (CvMat*)arr;

if(!CV_IS_MAT(mat))

{

     mat = cvGetMat(mat, &matstub, &coi);

     if(coi != 0)

         reutn;                 // CV_ERROR_FROM_CODE(CV_BadCOI);

}

 

// 写成函数为:

// This is just an example of function

// to support both IplImage and cvMat as an input

CVAPI(void) cvIamArr( const CvArr* arr )

{

     CV_FUNCNAME( "cvIamArr" );

     __BEGIN__;

     CV_ASSERT( mat == NULL );

     CvMat matstub, *mat = (CvMat*)arr;

     int coi = 0;

     if( !CV_IS_MAT(mat) )

     {

     CV_CALL( mat = cvGetMat( mat, &matstub, &coi ) );

     if (coi != 0) CV_ERROR_FROM_CODE(CV_BadCOI);

     }

     // Process as cvMat

     __END__;

}

 

4.图像直接操作

// 方式一:直接数组操作int col, row, z;

uchar b, g, r;

for(y = 0; row < img->height; y++)

{

     for(col = 0; col < img->width; col++)

     {

         b = img->imageData[img->widthStep * row + col * 3]

         g = img->imageData[img->widthStep * row + col * 3 + 1];

         r = img->imageData[img->widthStep * row + col * 3 + 2];

     }

}

 

// 方式二:宏操作:

int row, col;

uchar b, g, r;

for(row = 0; row < img->height; row++)

{

     for(col = 0; col < img->width; col++)

     {

         b = CV_IMAGE_ELEM(img, uchar, row, col * 3);

         g = CV_IMAGE_ELEM(img, uchar, row, col * 3 + 1);

         r = CV_IMAGE_ELEM(img, uchar, row, col * 3 + 2);

     }

}

// 注:CV_IMAGE_ELEM( img, uchar, row, col * img->nChannels + ch )

 

5.cvMat的直接操作

 

 

 

 

// 数组的直接操作比较郁闷,这是由于其决定于数组的数据类型。

 

// 对于CV_32FC1 (1 channel float)

CvMat* M = cvCreateMat(4, 4, CV_32FC1);

M->data.fl[row * M->cols + col] = (float)3.0;

 

// 对于CV_64FC1 (1 channel double)

CvMat* M = cvCreateMat(4, 4, CV_64FC1);

M->data.db[row * M->cols + col] = 3.0;

 

// 一般的,对于通道的数组:

CvMat* M = cvCreateMat(4, 4, CV_64FC1);

CV_MAT_ELEM(*M, double, row, col) = 3.0;

// 注意double要根据数组的数据类型来传入,这个宏对多通道无能为力。

 

// 对于多通道:

// 看看这个宏的定义:

#define CV_MAT_ELEM_CN(mat, elemtype, row, col) /

(*(elemtype*)((mat).data.ptr + (size_t)(mat).step*(row) + sizeof(elemtype)*(col)))

 

if(CV_MAT_DEPTH(M->type) == CV_32F)

     CV_MAT_ELEM_CN(*M, float, row, col * CV_MAT_CN(M->type) + ch) = 3.0;

if(CV_MAT_DEPTH(M->type) == CV_64F)

     CV_MAT_ELEM_CN( *M, double, row, col * CV_MAT_CN(M->type) + ch ) = 3.0;

 

// 更优化的方法是:

#define CV_8U 0

#define CV_8S 1

#define CV_16U 2

#define CV_16S 3

#define CV_32S 4

#define CV_32F 5

#define CV_64F 6

#define CV_USRTYPE1 7

 

int elem_size = CV_ELEM_SIZE(mat->type);

for(col = start_col; col < end_col; col++)

{

     for(row = 0; row < mat->rows; row++)

     {

         for(elem = 0; elem < elem_size; elem++)

         {

              (mat->data.ptr + ((size_t)mat->step * row) + (elem_size * col))[elem] =

                  (submat->data.ptr + ((size_t)submat->step * row) + (elem_size * (col - start_col)))[elem];

         }

     }

}

 

// 对于多通道的数组,以下操作是推荐的:

for(row=0; row< mat->rows; row++)

{

     p = mat->data.fl + row * (mat->step / 4);

     for(col = 0; col < mat->cols; col++)

     {

         *p = (float) row+col;

         *(p + 1) = (float) row + col + 1;

         *(p + 2) = (float) row + col + 2;

         p+=3;

     }

}

 

// 对于两通道和四通道而言:

CvMat* vector = cvCreateMat(1, 3, CV_32SC2);

CV_MAT_ELEM(*vector, CvPoint, 0, 0) = cvPoint(100,100);

 

CvMat* vector = cvCreateMat(1, 3, CV_64FC4);

CV_MAT_ELEM(*vector, CvScalar, 0, 0) = cvScalar(0, 0, 0, 0);

 

6.间接访问cvMat

// cvmGet/Set是访问CV_32FC1 CV_64FC1型数组的最简便的方式,其访问速度和直接访问几乎相同

cvmSet(mat, row, col, value);

cvmGet(mat, row, col);

 

// 举例:打印一个数组

inline void cvDoubleMatPrint(const CvMat* mat)

{

     int i, j;

     for(i = 0; i < mat->rows; i++)

     {

         for(j = 0; j < mat->cols; j++)

         {

              printf("%f ",cvmGet(mat, i, j));

         }

         printf("/n");

     }

}

 

// 而对于其他的,比如是多通道的后者是其他数据类型的,cvGet/Set2D是个不错的选择

CvScalar scalar = cvGet2D( mat, row, col );

cvSet2D( mat, row, col, cvScalar( r, g, b ) );

 

// 注意:数据不能为int,因为cvGet2D得到的实质是double类型。

// 举例:打印一个多通道矩阵:

inline void cv3DoubleMatPrint(const CvMat* mat)

{

     int i, j;

     for(i = 0; i < mat->rows; i++)

     {

         for(j = 0; j < mat->cols; j++)

         {

              CvScalar scal = cvGet2D(mat, i, j);

              printf("(%f,%f,%f) ", scal.val[0], scal.val[1], scal.val[2]);

         }

         printf("/n");

     }

}

 

 

7.修改矩阵的形状——cvReshape的操作

经实验表明矩阵操作的进行的顺序是:首先满足通道,然后满足列,最后是满足行。

注意:这和Matlab是不同的,Matlab是行、列、通道的顺序。

我们在此举例如下:

对于一通道:

// 1 channel

CvMat *mat, mathdr;

double data[] = {

     11, 12, 13, 14,

     21, 22, 23, 24,

     31, 32, 33, 34

};

CvMat* orig = &cvMat( 3, 4, CV_64FC1, data );

// 11 12 13 14

// 21 22 23 24

// 31 32 33 34

mat = cvReshape(orig, &mathdr, 1, 1); // new_ch, new_rows

cvDoubleMatPrint(mat);                    // above

 

// 11 12 13 14 21 22 23 24 31 32 33 34

mat = cvReshape(mat, &mathdr, 1, 3); // new_ch, new_rows

cvDoubleMatPrint( mat ); // above

//11 12 13 14

//21 22 23 24

//31 32 33 34

 

mat = cvReshape(orig, &mathdr, 1, 12 ); // new_ch, new_rows

cvDoubleMatPrint(mat ); // above

// 11

// 12

// 13

// 14

// 21

// 22

// 23

// 24

// 31

// 32

// 33

// 34

 

mat = cvReshape( mat, &mathdr, 1, 3); // new_ch, new_rows

cvDoubleMatPrint(mat);                    // above

// 11 12 13 14

// 21 22 23 24

// 31 32 33 34

 

mat = cvReshape(orig, &mathdr, 1, 2); // new_ch, new_rows

cvDoubleMatPrint(mat);                    // above

// 11 12 13 14 21 22

// 23 24 31 32 33 34

 

mat = cvReshape(mat, &mathdr, 1, 3); // new_ch, new_rows

cvDoubleMatPrint(mat);                    // above

// 11 12 13 14

// 21 22 23 24

// 31 32 33 34

 

mat = cvReshape(orig, &mathdr, 1, 6); // new_ch, new_rows

cvDoubleMatPrint( mat );                  // above

// 11 12

// 13 14

// 21 22

// 23 24

// 31 32

// 33 34

 

mat = cvReshape(mat, &mathdr, 1, 3); // new_ch, new_rows

cvDoubleMatPrint(mat);                    // above

// 11 12 13 14

// 21 22 23 24

// 31 32 33 34

 

// Use cvTranspose and cvReshape( mat, &mathdr, 1, 2 ) to get

// 11 23

// 12 24

// 13 31

// 14 32

// 21 33

// 22 34

// Use cvTranspose again when to recover

 

对于三通道

// 3 channels

CvMat mathdr, *mat;

double data[] = {

     111, 112, 113, 121, 122, 123,

     211, 212, 213, 221, 222, 223

};

CvMat* orig = &cvMat(2, 2, CV_64FC3, data);

// (111,112,113) (121,122,123)

// (211,212,213) (221,222,223)

 

mat = cvReshape(orig, &mathdr, 3, 1); // new_ch, new_rows

cv3DoubleMatPrint(mat);                   // above

// (111,112,113) (121,122,123) (211,212,213) (221,222,223)

 

// concatinate in column first order

mat = cvReshape(orig, &mathdr, 1, 1); // new_ch, new_rows

cvDoubleMatPrint(mat);                    // above

// 111 112 113 121 122 123 211 212 213 221 222 223

 

// concatinate in channel first, column second, row third

mat = cvReshape(orig, &mathdr, 1, 3); // new_ch, new_rows

cvDoubleMatPrint(mat);                    // above

// 111 112 113 121

// 122 123 211 212

// 213 221 222 223

 

// channel first, column second, row third

mat = cvReshape(orig, &mathdr, 1, 4); // new_ch, new_rows

cvDoubleMatPrint(mat);                    // above

// 111 112 113

// 121 122 123

// 211 212 213

// 221 222 223

 

// channel first, column second, row third

// memorize this transform because this is useful to

// add (or do something) color channels

CvMat* mat2 = cvCreateMat(mat->cols, mat->rows, mat->type);

cvTranspose(mat, mat2);

cvDoubleMatPrint(mat2);                    // above

//111 121 211 221

//112 122 212 222

//113 123 213 223

 

cvReleaseMat( &mat2 );

 

 

 

8.计算色彩距离

 

 

// 我们要计算img1,img2的每个像素的距离,用dist表示,定义如下

IplImage *img1 = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, 3);

IplImage *img2 = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, 3);

CvMat *dist = cvCreateMat(h, w, CV_64FC1);

 

// 比较笨的思路是:cvSplit->cvSub->cvMul->cvAdd

// 代码如下:

IplImage *img1B = cvCreateImage(cvGetSize(img1), img1->depth, 1);

IplImage *img1G = cvCreateImage(cvGetSize(img1), img1->depth, 1);

IplImage *img1R = cvCreateImage(cvGetSize(img1), img1->depth, 1);

IplImage *img2B = cvCreateImage(cvGetSize(img1), img1->depth, 1);

IplImage *img2G = cvCreateImage(cvGetSize(img1), img1->depth, 1);

IplImage *img2R = cvCreateImage(cvGetSize(img1), img1->depth, 1);

IplImage *diff = cvCreateImage(cvGetSize(img1), IPL_DEPTH_64F, 1);

cvSplit(img1, img1B, img1G, img1R);

cvSplit(img2, img2B, img2G, img2R);

 

cvSub(img1B, img2B, diff);

cvMul(diff, diff, dist);

 

cvSub(img1G, img2G, diff);

cvMul(diff, diff, diff);

cvAdd(diff, dist, dist);

 

cvSub(img1R, img2R, diff);

cvMul(diff, diff, diff);

cvAdd(diff, dist, dist);

 

cvReleaseImage(&img1B);

cvReleaseImage(&img1G);

cvReleaseImage(&img1R);

cvReleaseImage(&img2B);

cvReleaseImage(&img2G);

cvReleaseImage(&img2R);

cvReleaseImage(&diff);

 

// 比较聪明的思路是

int D = img1->nChannels;             // D: Number of colors (dimension)

int N = img1->width * img1->height; // N: number of pixels

CvMat mat1hdr, *mat1 = cvReshape(img1, &mat1hdr, 1, N); // N x D(colors)

CvMat mat2hdr, *mat2 = cvReshape(img2, &mat2hdr, 1, N); // N x D(colors)

CvMat diffhdr, *diff = cvCreateMat(N, D, CV_64FC1);     // N x D, temporal buff

cvSub(mat1, mat2, diff);

cvMul(diff, diff, diff);

dist = cvReshape(dist, &disthdr, 1, N);                      // nRow x nCol to N x 1

cvReduce(diff, dist, 1, CV_REDUCE_SUM);                      // N x D to N x 1

dist = cvReshape(dist, &disthdr, 1, img1->height);      // Restore N x 1 to nRow x nCol

cvReleaseMat(&diff);

 

 

 

 

#pragma comment( lib, "cxcore.lib" )

#include "cv.h"

#include <stdio.h>

int main()

{

     CvMat* mat = cvCreateMat(3, 3, CV_32FC1);

     cvZero(mat);       // 将矩阵置

     // 为矩阵元素赋值

     CV_MAT_ELEM(*mat, float, 0, 0) = 1.f;

     CV_MAT_ELEM(*mat, float, 0, 1) = 2.f;

     CV_MAT_ELEM(*mat, float, 0, 2) = 3.f;

     CV_MAT_ELEM(*mat, float, 1, 0) = 4.f;

     CV_MAT_ELEM(*mat, float, 1, 1) = 5.f;

     CV_MAT_ELEM(*mat, float, 1, 2) = 6.f;

     CV_MAT_ELEM(*mat, float, 2, 0) = 7.f;

     CV_MAT_ELEM(*mat, float, 2, 1) = 8.f;

     CV_MAT_ELEM(*mat, float, 2, 2) = 9.f;

     // 获得矩阵元素(0,2)的值

     float *p = (float*)cvPtr2D(mat, 0, 2);

     printf("%f/n",*p);

     return 0;

}

 

你可能感兴趣的:(OpenCV 矩阵操作 CvMat(二))