今年的省赛题目,现场的时候觉得链表查找就是O(n)的复杂度然后就没想了,最后YY一个线段树+平衡树的巨复杂无比的东西结果写跪了,泪……
维护一个bool型的pre用来表示当前的前向指针是next[0]还是next[1],这样翻转操作可以O(1)完成……
/* Author : Speedcell Update : 2013-10-08 Version : soppYcell 2.3 */ #include <algorithm> #include <iostream> #include <fstream> #include <sstream> #include <iomanip> #include <map> #include <set> #include <list> #include <stack> #include <queue> #include <deque> #include <vector> #include <string> #include <bitset> #include <memory> #include <complex> #include <numeric> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <time.h> #include <ctype.h> #include <assert.h> #include <locale.h> using namespace std; #pragma pack(4) #ifndef __CONSTANT__ #define __CONSTANT__ typedef long long LONG; const double pi = acos(-1.0); const int inf = 0x7f7f7f7f; const LONG INF = 0x7f7f7f7f7f7f7f7fll; const int go[8][2] = {{0,1},{0,-1},{1,0},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1}}; #endif // __CONSTANT__ #ifndef __IO__ #define __IO__ inline bool RD(int & a) {return scanf("%d",&a)!=EOF;} inline bool RD(char & a) {return scanf("%c",&a)!=EOF;} inline bool RD(char * a) {return scanf("%s", a)!=EOF;} inline bool RD(double & a) {return scanf("%lf",&a)!=EOF;} inline bool RD(LONG & a) {return scanf("%lld",&a)!=EOF;} template<class T1> inline bool IN(T1 & a) {return RD(a);} template<class T1,class T2> inline bool IN(T1 & a,T2 & b) {return RD(a)&&RD(b);} template<class T1,class T2,class T3> inline bool IN(T1 & a,T2 & b,T3 & c) {return RD(a)&&RD(b)&&RD(c);} template<class T1,class T2,class T3,class T4> inline bool IN(T1 & a,T2 & b,T3 & c,T4 & d) {return RD(a)&&RD(b)&&RD(c)&&RD(d);} template<class T1,class T2,class T3,class T4,class T5> inline bool IN(T1 & a,T2 & b,T3 & c,T4 & d,T5 & e) {return RD(a)&&RD(b)&&RD(c)&&RD(d)&&RD(e);} template<class T1,class T2,class T3,class T4,class T5,class T6> inline bool IN(T1 & a,T2 & b,T3 & c,T4 & d,T5 & e,T6 & f) {return RD(a)&&RD(b)&&RD(c)&&RD(d)&&RD(e)&&RD(f);} template<class T1,class T2,class T3,class T4,class T5,class T6,class T7> inline bool IN(T1 & a,T2 & b,T3 & c,T4 & d,T5 & e,T6 & f,T7 & g) {return RD(a)&&RD(b)&&RD(c)&&RD(d)&&RD(e)&&RD(f)&&RD(g);} inline void PT(int a) {printf("%d",a);} inline void PT(char a) {printf("%c",a);} inline void PT(char * a) {printf("%s",a);} inline void PT(double a) {printf("%f",a);} inline void PT(LONG a) {printf("%lld",a);} inline void PT(const char a[]) {printf("%s",a);} template<class T1> inline void OT(T1 a) {PT(a);} template<class T1,class T2> inline void OT(T1 a,T2 b) {PT(a),PT(' '),PT(b);} template<class T1,class T2,class T3> inline void OT(T1 a,T2 b,T3 c) {PT(a),PT(' '),PT(b),PT(' '),PT(c);} template<class T1,class T2,class T3,class T4> inline void OT(T1 a,T2 b,T3 c,T4 d) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d);} template<class T1,class T2,class T3,class T4,class T5> inline void OT(T1 a,T2 b,T3 c,T4 d,T5 e) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e);} template<class T1,class T2,class T3,class T4,class T5,class T6> inline void OT(T1 a,T2 b,T3 c,T4 d,T5 e,T6 f) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT(' '),PT(f);} template<class T1,class T2,class T3,class T4,class T5,class T6,class T7> inline void OT(T1 a,T2 b,T3 c,T4 d,T5 e,T6 f,T7 g) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT(' '),PT(f),PT(' '),PT(g);} template<class T1> inline void OL(T1 a) {PT(a),PT('\n');} template<class T1,class T2> inline void OL(T1 a,T2 b) {PT(a),PT(' '),PT(b),PT('\n');} template<class T1,class T2,class T3> inline void OL(T1 a,T2 b,T3 c) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT('\n');} template<class T1,class T2,class T3,class T4> inline void OL(T1 a,T2 b,T3 c,T4 d) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT('\n');} template<class T1,class T2,class T3,class T4,class T5> inline void OL(T1 a,T2 b,T3 c,T4 d,T5 e) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT('\n');} template<class T1,class T2,class T3,class T4,class T5,class T6> inline void OL(T1 a,T2 b,T3 c,T4 d,T5 e,T6 f) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT(' '),PT(f),PT('\n');} template<class T1,class T2,class T3,class T4,class T5,class T6,class T7> inline void OL(T1 a,T2 b,T3 c,T4 d,T5 e,T6 f,T7 g) {PT(a),PT(' '),PT(b),PT(' '),PT(c),PT(' '),PT(d),PT(' '),PT(e),PT(' '),PT(f),PT(' '),PT(g),PT('\n');} #endif // __IO__ #ifndef __MACRO__ #define __MACRO__ #define ML(times) int tcase; IN(tcase); FOR(times,1,tcase) #define FOR(i,a,b) for(int i=int(a),_##i=int(b);i<=_##i;i++) #define DWN(i,b,a) for(int i=int(b),_##i=int(a);_##i<=i;i--) #define ECH(i,u,pre,next) for(int i=int(pre[u]);i!=-1;i=int(next[i])) #define MEM(a,v) memset(a,v,sizeof(a)) #define CLR(a,v) FOR(_i##a,0,sizeof(a)/sizeof(a[0])-1) a[_i##a]=v #define LOOP(a,n) \ FOR(_i##a,0,(n)-1) \ OT(a[_i##a]),OT(_i##a!=__i##a?' ':'\n') #define LOOP2(a,n,m) \ FOR(_i##a,0,(n)-1) FOR(_j##a,0,(m)-1) \ OT(a[_i##a][_j##a]),OT(_j##a!=__j##a?' ':'\n') #define LOOPG(G,n,pre,next) \ FOR(_i##a,0,(n)-1) ECH(_j##a,_i##a,pre,next) \ OL(_i##a,G[_j##a].v,G[_j##a].w) #endif // __MACRO__ #ifndef __BIT__ #define __BIT__ template<class T> inline T lb(T i) {return i&-i;} template<class T> inline T lc(T i) {return i<<1;} template<class T> inline T rc(T i) {return i<<1|1;} template<class T> inline T at(T a,int i) {return a& (T(1)<<i);} template<class T> inline T nt(T a,int i) {return a^ (T(1)<<i);} template<class T> inline T s1(T a,int i) {return a| (T(1)<<i);} template<class T> inline T s0(T a,int i) {return a&~(T(1)<<i);} #endif // __BIT__ #ifndef __COMPARER__ #define __COMPARER__ const double eps = 1e-8; inline int cmp(double a,double b=0) {return fabs(b-a)<eps?0:((b-a)<eps?+1:-1);} template<typename type> inline int cmp(type a,type b=0) {return a==b?0:(b<a?+1:-1);} template<typename type> inline bool gt(type a,type b) {return cmp(a,b)> 0;} template<typename type> inline bool ge(type a,type b) {return cmp(a,b)>=0;} template<typename type> inline bool eq(type a,type b) {return cmp(a,b)==0;} template<typename type> inline bool ne(type a,type b) {return cmp(a,b)!=0;} template<typename type> inline bool le(type a,type b) {return cmp(a,b)<=0;} template<typename type> inline bool ls(type a,type b) {return cmp(a,b)< 0;} template<typename type> inline type smax(type a,type b) {return gt(a,b)?a:b;} template<typename type> inline type smin(type a,type b) {return ls(a,b)?a:b;} #endif // __COMPARER__ const int MAXV = 100002; struct node { int val; node *next[2]; }a[MAXV],*l[MAXV]; bool pre; void clear(int n) { pre=false; FOR(i,0,n-1) { l[i]=&a[i]; a[i].val=i+1; a[i].next[ pre]=NULL; a[i].next[!pre]=NULL; if(i) a[i].next[ pre]=&a[i-1]; if(i!=n-1) a[i].next[ !pre]=&a[i+1]; } } void remove(node *ptr) { if(ptr->next[ pre]) ptr->next[ pre]->next[!pre]=ptr->next[!pre]; if(ptr->next[!pre]) ptr->next[!pre]->next[ pre]=ptr->next[ pre]; } void insert_left(node *ptr,node *to) { remove(ptr); if(to->next[ pre]) to->next[ pre]->next[!pre]=ptr; ptr->next[ pre]=to->next[ pre]; ptr->next[!pre]=to; to->next[ pre]=ptr; } void insert_right(node *ptr,node *to) { remove(ptr); if(to->next[!pre]) to->next[!pre]->next[ pre]=ptr; ptr->next[!pre]=to->next[!pre]; ptr->next[ pre]=to; to->next[!pre]=ptr; } void op1(int x,int y) { insert_left(l[x-1],l[y-1]); } void op2(int x,int y) { insert_right(l[x-1],l[y-1]); } void op3(int x,int y) { swap(l[x-1],l[y-1]); swap(l[x-1]->val,l[y-1]->val); } void op4(void) { pre^=true; } LONG sum(int n) { node *root=NULL; FOR(i,0,n-1) if(!l[i]->next[pre]) { root=l[i]; break; } LONG cnt=0,ans=0; for(node *i=root;i!=NULL;i=i->next[!pre]) { if(cnt++%2==0) ans+=i->val; } return ans; } int n,m,o,x,y,times=1; int main() { #ifndef ONLINE_JUDGE freopen("一行盒子.txt","r",stdin); #else #endif while(IN(n,m)) { clear(n); while(m--) { IN(o); if(o==1) { IN(x,y); op1(x,y); } else if(o==2) { IN(x,y); op2(x,y); } else if(o==3) { IN(x,y); op3(x,y); } else op4(); } printf("Case %d: %lld\n",times++,sum(n)); } return 0; }