- centos7输入python -m bitsandbytes报错CUDA Setup failed despite GPU being available. Please run the follo
小太阳,乐向上
python开发语言
在centos7.9系统中安装gpu驱动及cuda,跑大模型会报错,提示让输入python-mbitsandbytes依然报错:CUDASETUP:Loadingbinary/usr/local/python3/lib/python3.9/site-packages/bitsandbytes/libbitsandbytes_cuda117.so.../lib64/libstdc++.so.6:ve
- 关于bitsandbytes安装报错
跃跃欲试88
语言模型人工智能transformer
RunTimeError:CUDASetupfaileddespiteGPUbeingavailable.InspecttheCUDASETUPoutputsabovetofixyourenvironment!ubuntu@VM-0-8-ubuntu:~$python-mbitsandbytesFalse===================================BUGREPORT===
- python -m bitsandbytes 报错解释与解决
MityKif
python开发语言
RuntimeError:CUDASetupfaileddespiteGPUbeingavailable.Pleaserunthefollowingcommandtogetmoreinformation:python-mbitsandbytesInspecttheoutputofthecommandandseeifyoucanlocateCUDAlibraries.Youmightneedtoad
- c++高性能多进程 cuda编程: safe_softmax实现 + cub::BlockReduce自定义归约操作
FakeOccupational
深度学习c++开发语言
目录cub::BlockReduce自定义归约操作(`cub::BlockReduce::Reduce`)1.语法safe_softmax实现cub::BlockReducecub::BlockReduce是CUB库(CUDAUnBound)提供的一种用于GPU线程块内数据归约(一般完成所有数据规约需要两次规约)的高效工具。它允许线程块内的多个线程并行地对数据执行归约操作,cub::BlockRe
- AXI总线之相关应用
逾越TAO
fpga开发硬件工程笔记
AXI总线作为现代SoC设计的核心互连协议,其应用场景极为广泛,覆盖移动设备、AI加速器、FPGA、存储控制器等多个领域。以下是AXI在不同应用中的关键角色及具体实现案例:一、移动处理器与SoC应用场景:智能手机、平板电脑的SoC(如高通骁龙、苹果A系列、华为麒麟)中,AXI用于连接多核CPU、GPU、ISP(图像信号处理器)、DDR控制器等模块。典型案例:ARMCortex-A系列多核集群:AX
- Deepseek的本地化部署软件工具包
哈拉少12
人工智能
选择模型版本参数规模硬件要求(最低)适用场景1.5B/7B8GB内存,无专用GPU文本处理、简单问答14B16GB内存+12GB显存代码生成、逻辑推理32B/70B24GB显存+32GB内存企业级复杂任务执行命令:ollamarundeepseek-r1:14b(以14B为例)。配置环境变量新增用户变量:OLLAMA_HOST=0.0.0.0OLLAMA_ORIGINS=*重启Ollama服务使配
- 芯片:CPU和GPU有什么区别?
InnoLink_1024
AGI人工智能人工智能aiagigpu算力
CPU(中央处理器)和GPU(图形处理单元)是计算机系统中两种非常重要的处理器,它们各自有不同的设计理念、架构特点以及应用领域。下面是它们之间的一些主要差异:1.设计目的与应用领域CPU:设计目的是为了处理广泛的计算任务,包括操作系统管理、应用程序运行和基本的输入输出处理等。它处理的是复杂的、通用的计算任务,通常包括控制逻辑、内存管理等。GPU:设计目的是为了处理图形和并行计算任务。最初是为图形渲
- 使用LoRA微调LLaMA3
想胖的壮壮
深度学习人工智能
使用LoRA微调LLaMA3的案例案例概述在这个案例中,我们将使用LoRA微调LLaMA3模型,进行一个文本分类任务。我们将使用HuggingFace的Transformers库来完成这个过程。步骤一:环境搭建安装必要的Python包pipinstalltransformersdatasetstorch配置GPU环境确保你的环境中配置了CUDA和cuDNN,并验证GPU是否可用。importtor
- nvidia_uvm 被占用,nvidia-smi 卡死
guganly
数据中心运维实战chrome前端服务器运维linux
系统可以识别到多块NVIDIAGPU,且驱动模块已加载,但nvidia_uvm被占用,nvidia-smi卡死,通常是由于以下原因导致:可能原因GPU资源被占用某些进程正在使用NVIDIA驱动,导致模块无法卸载。驱动损坏或加载异常NVIDIA内核模块部分加载,但驱动未能正确工作。GPU挖矿或AI任务未释放某些后台程序未正常退出,导致GPU资源无法被释放。PCIe通道异常多卡环境可能由于PCIe配置
- 用户行为路径分析(Google Analytics数据挖掘)
闲人编程
Python数据分析实战精要数据挖掘人工智能用户行为路径分析Analytics数据分析用户习惯
目录用户行为路径分析(GoogleAnalytics数据挖掘)1.引言2.项目背景与意义2.1用户行为路径的重要性2.2GoogleAnalytics数据概述2.3数据规模与挑战3.数据集生成与介绍4.数据预处理与GPU加速5.用户行为路径分析方法5.1用户行为路径构建5.2行为路径挖掘与模式分析5.3常用指标计算6.数据可视化与指标展示7.PyQtGUI设计与实现8.GPU加速与性能优化9.系统
- 算力未来演进与多场景创新
智能计算研究中心
其他
内容概要算力作为数字经济的核心生产力,其技术架构与应用场景正经历多维突破。从技术架构层面来看,异构计算通过整合CPU、GPU、FPGA等多元芯片实现性能跃升,边缘计算则借助分布式节点降低时延并提升响应效率,而量子计算在特定领域的指数级加速潜力已进入验证阶段。在应用场景维度,工业互联网通过实时数据分析优化产线效率,智能安防依托视频流结构化处理增强预警能力,元宇宙则依赖高密度渲染与低延迟传输构建沉浸式
- 融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度,不受制于供应商限制。本文将深入探讨如何混合AMD/NVIDIAGPU集群以支持PyTorch分布式训
- Windows 图形显示驱动开发-WDDM 3.0功能- IOMMU DMA 重新映射(一)
程序员王马
windows图形显示驱动开发驱动开发
概述直到WDDM3.0,Dxgkrnl仅支持通过1:1物理重新映射实现IOMMU隔离,这意味着GPU访问的逻辑页被转换为相同的物理页码。IOMMUDMA重新映射允许GPU通过不再以1:1映射的逻辑地址访问内存。相反,Dxgkrnl能够提供逻辑上连续的地址范围。Dxgkrnl对GPU施加限制:GPU必须能够访问所有物理内存才能启动设备。如果GPU的最高可见地址不超过系统上安装的最高物理地址,则Dxg
- Linux中部署DeepSeek R1
Java探索者 °
linux服务器语言模型
一、首先了解DeepSeek-R1模型规格B则是指“billion”的意思,也就是十亿,表示这个模型有多少亿个参数。DeepSeek-R1本地部署硬件需求表模型规模GPU需求CPU需求内存需求存储需求备注1.5B-GTX16504GB(可选)四核i5/Ryzen3000+16GBDDR450GBSSD需4-bit量化,CPU推理延迟约10-30秒/回答,适合基础文本生成7BRTX306012GB或
- 深入GPU渲染流水管线:从顶点到像素的微观世界
晴空了无痕
图形学GPU渲染管线
现代图形硬件的架构解密与优化实践一、渲染流水线全景解析1.经典渲染管线阶段划分应用阶段几何阶段光栅化阶段像素处理阶段输出合并阶段2.现代GPU架构演进SIMT架构特性:NVIDIASM(StreamingMultiprocessor)vsAMDCU(ComputeUnit)硬件管线并行度:顶点着色器:32线程/Warp像素着色器:8x8像素/Quad延迟渲染革命:Tile-BasedDeferre
- 程序员必看!DeepSeek全栈开发实战指南:从代码生成到性能优化
AI创享派
后端
一、DeepSeek技术新突破:程序员效率革命(开篇结合最新技术动态)2025年2月25日,DeepSeek接连放出两大技术王牌:全球首个面向MoE模型的全栈通信库DeepEP开源,以及深度思考R1模型的全面升级。这两项技术突破对程序员群体意义重大:通信效率飞跃:DeepEP通过NVLink优化实现GPU间158GB/s传输速度,后端开发者训练大模型时可节省60%集群资源推理性能突破:R1模型在H
- 自建 DeepSeek 时代已来,联网搜索如何高效实现
云原生
作者:张添翼(澄潭)开源LLM的新纪元:DeepSeek带来的技术平权随着DeepSeek等高质量开源大模型的涌现,企业自建智能问答系统的成本已降低90%以上。基于7B/13B参数量的模型在常规GPU服务器上即可获得商业级响应效果,配合Higress开源AI网关的增强能力,开发者可快速构建具备实时联网搜索能力的智能问答系统。Higress:零代码增强LLM的瑞士军刀Higress作为云原生API网
- yolov4
zzh-
笔记
V4贡献:亲民政策,单GPU就能训练的非常好,接下来很多小模块都是这个出发点两大核心方法,从数据层面和网络设计层面来进行改善消融实验,感觉能做的都让他给做了,这工作量不轻全部实验都是单GPU完成,不用太担心设备了Bagoffreebies(BOF)只增加训练成本,但是能显著提高精度,并不影响推理速度数据增强:调整亮度、对比度、色调、随机缩放、剪切、翻转、旋转网络正则化的方法:Dropout、Dro
- 【保姆级视频教程(一)】YOLOv12环境配置:从零到一,手把手保姆级教程!| 小白也能轻松玩转目标检测!
一只云卷云舒
YOLOv12保姆级通关教程YOLOYOLOv12flashattentionGPU计算能力算力
【2025全站首发】YOLOv12环境配置:从零到一,手把手保姆级教程!|小白也能轻松玩转目标检测!文章目录1.FlashAttentionWindows端WHL包下载1.1简介1.2下载链接1.3国内镜像站1.4安装方法2.NVIDIAGPU计算能力概述2.1简介2.2计算能力版本与GPU型号对照表2.2.1CUDA-EnabledDatacenterProducts2.2.2CUDA-Enab
- 使用 WebP 优化 GPU 纹理占用
泫凝
javascript前端
WebP格式相比JPEG/PNG文件更小,可以减少GPU纹理内存占用,提高WebGL/Three.js/3D渲染的性能。为什么WebP能减少GPU内存占用?文件更小→WebP比JPG/PNG压缩率更高,减少纹理上传带宽,提高渲染速度。支持透明度(RGBA)→比PNG更小,适用于UI贴图/透明纹理。减少Mipmaps体积→WebP生成的mipmap纹理占用的GPU内存更少。⚠️但WebP仍然是8-b
- LLaMA-Factory 微调训练
zsh_abc
llamadocker深度学习人工智能pythonlinux
LLaMA-Factory微调训练该框架功能,标注-微调-导出-合并-部署,一整条流程都有,而且训练时消耗的gpu算力也会小一些一,安装(推荐在linux中训练,win可以用wsl+docker)gitclonehttps://github.com/hiyouga/LLaMA-Factory.gitcdLLaMA-Factory#根据cuda版本选择安装pytoch版本pip3installtor
- 指纹浏览器:隐私保护利器与技术实践指南——从身份隐匿到多账号管理的核心解析
Hotlogin
前端
一、浏览器指纹:数字身份追踪的底层逻辑浏览器指纹通过收集设备参数(如Canvas渲染特征、字体列表、WebGL硬件信息等)生成用户唯一标识,无需Cookie即可实现精准追踪。根据EFF研究,其识别准确率可达90%以上。▶核心技术解析Canvas指纹:不同设备的抗锯齿算法差异生成唯一哈希值,成为主流追踪手段WebGL指纹:提取GPU驱动版本等硬件信息,构建设备画像环境参数交叉验证:时区、屏幕分辨率、
- GPU算力租用平台推荐
金枪鱼net
gpu算力
当考虑GPU算力租用平台时,以下是一些值得推荐的选项,它们各自具有不同的特点和优势:Dcloud:网址:cloud.guaimu.com/u/gpu特点:Dcloud是国内知名度较高的云服务器厂商之一,其GPU对于各类想要仅用于学习的学生来说,性价比应该是首选。腾讯云:网址:cloud.guaimu.com/tx/gpu(注意:此链接可能并非腾讯云官方链接,请通过腾讯云官网查找具体GPU服务器购买
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- Windows 图形显示驱动开发-WDDM 3.0功能- D3D12 视频编码(一)
程序员王马
windows图形显示驱动开发驱动开发windows
关于Direct3D12视频编码在Windows11(WDDM3.0)之前,DirectX12提供了应用程序和驱动程序级接口(API和DDI),以支持多个视频应用程序的GPU加速,包括视频解码、视频处理和运动估计。从Windows11开始,D3D12向现有视频API/DDI系列添加了视频编码功能。此功能提供一组一致的编码API/DDI,这些API/DDI与现有的D3D12框架一致,并允许开发人员使
- ubuntu20.04挂起/休眠后无法唤醒,只能强制重启
koigh
ubuntunvidia
文章目录1、设备信息2、问题描述3、解决思路3.1、禁用挂起功能3.2、降低驱动版本1、设备信息OS:Ubuntu20.04.2LTSx86_64Kernel:5.8.0-63-genericShell:zsh5.8DE:GNOMECPU:Inteli5-6300HQ(4)@3.200GHzGPU:IntelHDGraphics530GPU:NVIDIAGeForceGTX960MNVIDIAVe
- ubuntu20.04 GPU基准测试
爱吃土豆的猫ttt
gpu
目前仅在一种机型尝试环境系统版本(cat/etc/issue)ubuntu20.04gpu数量及型号(lspci|grepNV|grepVGA)02:00.0VGAcompatiblecontroller:NVIDIACorporationDevice2206(reva1)83:00.0VGAcompatiblecontroller:NVIDIACorporationDevice2206(reva
- torch.unsqueeze:灵活调整张量维度的利器
冰蓝蓝
transformertransformer深度学习
在深度学习框架PyTorch中,张量(Tensor)是最基本的数据结构,它类似于NumPy中的数组,但可以在GPU上运行。在日常的深度学习编程中,我们经常需要调整张量的维度以适应不同的操作和层。torch.unsqueeze函数就是PyTorch提供的一个非常有用的工具,用于在指定位置增加张量的维度。本文将详细介绍torch.unsqueeze的用法和一些实际应用场景。什么是torch.unsqu
- 如何使用MATLAB进行高效的GPU加速深度学习模型训练?
百态老人
matlab深度学习开发语言
要使用MATLAB进行高效的GPU加速深度学习模型训练,可以遵循以下步骤和策略:选择合适的GPU硬件:首先,确保您的计算机配备有支持CUDA的NVIDIAGPU,并且其计算能力至少为3.0或以上。可以通过gpuDevice命令检查GPU是否具备加速功能。安装必要的工具箱:确保安装了MATLAB的DeepLearningToolbox和ParallelComputingToolbox,这些工具箱提供
- matlab怎么将代码在gpu上运行,使用GPU加速MATLAB代码?
如果有片海
使用GPU加速MATLAB代码?AccelerEyes于2012年12月宣布,它将与Mathworks在GPU代码上合作,并已停止使用MATLAB的产品Jacket:http://blog.accelereyes.com/blog/2012/12/12/exciting-updates-from-accelereyes/不幸的是,他们不再销售Jacket许可证。据我所知,基于ArrayFire的J
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL