POJ 2318 TOYS(点在多边形内判定)
http://poj.org/problem?id=2318
题意:
有一个平行于坐标轴的长矩形,被n块木板分成了n+1个包间.然后给你一些点的坐标,问你每个包间各包含了几个点?
分析:
直接求出每个包间的4个点坐标(按时针顺序),然后对于每个点,用点在多边形内的模板直接判定即可.
本题容易超时,可以用int替代double来计算加快速度.且判断点在多边形内可以直接判断4个叉积即可,因为每个多边形都是凸4边行.
AC代码: 用C++提交,G++提交超时.
#include<cstdio> #include<cstring> #include<cmath> using namespace std; const double eps=1e-10; int dcmp(double x) { if(fabs(x)<eps) return 0; return x<0?-1:1; } const int maxn=5000+10; struct Point { double x,y; Point(){} Point(double x,double y):x(x),y(y){} }; typedef Point Vector; Vector operator-(Point A,Point B) { return Vector(A.x-B.x,A.y-B.y); } double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; } double Cross(Vector A,Vector B) { return A.x*B.y-A.y*B.x; } bool InSegment(Point P,Point A,Point B) { return dcmp(Cross(A-B,P-A))==0 && dcmp(Dot(A-P,B-P))<=0; } /* //本题由于都是4边行,必须加快速度判断. //如果直接用下面这个函数模板,将超时 bool IsPointInPolygon(Point p,Point *poly,int n) { int wn=0; for(int i=0;i<n;++i) { if(InSegment(p, poly[(i+1)%n], poly[i]) ) return true; int k=dcmp( Cross(poly[(i+1)%n]-poly[i], p-poly[i] ) ); int d1=dcmp( poly[i].y-p.y ); int d2=dcmp( poly[(i+1)%n].y-p.y ); if(k>0 && d1<=0 && d2>0) ++wn; if(k<0 && d2<=0 && d1>0) --wn; } if(wn!=0) return true; return false; } */ bool IsPointInPolygon(Point p,Point *poly) { for(int i=0;i<4;++i) if(dcmp (Cross(poly[(i+1)%4]-poly[i], p-poly[i]) )>0 ) return false; return true; } Point p[maxn];//需要判断位置的所有点 Point up[maxn],down[maxn];//记录上一排的n+1个点,和下一排的n+1个点 Point poly[maxn][4]; int ans[maxn];//保存第i个隔间有几个点 int main() { int n,m; double x1,y1,x2,y2; bool first=true; while(scanf("%d",&n)==1 && n) { if(!first) printf("\n"); first=false; scanf("%d%lf%lf%lf%lf",&m,&x1,&y1,&x2,&y2); up[0]=Point(x1,y1); up[n+1]=Point(x2,y1); down[0]=Point(x1,y2); down[n+1]=Point(x2,y2); for(int i=1;i<=n;++i) { scanf("%lf%lf",&x1,&x2); up[i]=Point(x1,y1); down[i]=Point(x2,y2); } for(int i=0;i<=n;++i) { poly[i][0]=up[i]; poly[i][1]=up[i+1]; poly[i][2]=down[i+1]; poly[i][3]=down[i]; } memset(ans,0,sizeof(ans)); for(int i=1;i<=m;++i) { double x,y; scanf("%lf%lf",&x,&y); for(int j=0;j<=n;++j) if(IsPointInPolygon(Point(x,y), poly[j] )) { ans[j]++; break; } } for(int i=0;i<=n;++i) printf("%d: %d\n",i,ans[i]); } return 0; }