转自https://www.ibm.com/developerworks/cn/linux/l-serials/
串口简介
串行口是计算机一种常用的接口,具有连接线少,通讯简单,得到广泛的使用。常用的串口是 RS-232-C 接口(又称 EIA RS-232-C)它是在 1970 年由美国电子工业协会(EIA)联合贝尔系统、 调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。它的全名是"数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准"该标准规定采用一个 25 个脚的 DB25 连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。传输距离在码元畸变小于 4% 的情况下,传输电缆长度应为 50 英尺。
Linux 操作系统从一开始就对串行口提供了很好的支持,本文就 Linux 下的串行口通讯编程进行简单的介绍,如果要非常深入了解,建议看看本文所参考的 《Serial Programming Guide for POSIX Operating Systems》
计算机串口的引脚说明
序号 | 信号名称 | 符号 | 流向 | 功能 |
2 | 发送数据 | TXD | DTE→DCE | DTE发送串行数据 |
3 | 接收数据 | RXD | DTE←DCE | DTE 接收串行数据 |
4 | 请求发送 | RTS | DTE→DCE | DTE 请求 DCE 将线路切换到发送方式 |
5 | 允许发送 | CTS | DTE←DCE | DCE 告诉 DTE 线路已接通可以发送数据 |
6 | 数据设备准备好 | DSR | DTE←DCE | DCE 准备好 |
7 | 信号地 | 信号公共地 | ||
8 | 载波检测 | DCD | DTE←DCE | 表示 DCE 接收到远程载波 |
20 | 数据终端准备好 | DTR | DTE→DCE | DTE 准备好 |
22 | 振铃指示 | RI | DTE←DCE | 表示 DCE 与线路接通,出现振铃 |
回页首
串口操作
串口操作需要的头文件
#include <stdio.h> /*标准输入输出定义*/ #include <stdlib.h> /*标准函数库定义*/ #include <unistd.h> /*Unix 标准函数定义*/ #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> /*文件控制定义*/ #include <termios.h> /*PPSIX 终端控制定义*/ #include <errno.h> /*错误号定义*/ |
回页首
打开串口
在 Linux 下串口文件是位于 /dev 下的
串口一 为 /dev/ttyS0
串口二 为 /dev/ttyS1
打开串口是通过使用标准的文件打开函数操作:
int fd; /*以读写方式打开串口*/ fd = open( "/dev/ttyS0", O_RDWR); if (-1 == fd){ /* 不能打开串口一*/ perror(" 提示错误!"); } |
回页首
设置串口
最基本的设置串口包括波特率设置,效验位和停止位设置。
串口的设置主要是设置 struct termios 结构体的各成员值。
struct termio { unsigned short c_iflag; /* 输入模式标志 */ unsigned short c_oflag; /* 输出模式标志 */ unsigned short c_cflag; /* 控制模式标志*/ unsigned short c_lflag; /* local mode flags */ unsigned char c_line; /* line discipline */ unsigned char c_cc[NCC]; /* control characters */ }; |
设置这个结构体很复杂,我这里就只说说常见的一些设置:
波特率设置
下面是修改波特率的代码:
struct termios Opt; tcgetattr(fd, &Opt); cfsetispeed(&Opt,B19200); /*设置为19200Bps*/ cfsetospeed(&Opt,B19200); tcsetattr(fd,TCANOW,&Opt); |
设置波特率的例子函数:
/** *@brief 设置串口通信速率 *@param fd 类型 int 打开串口的文件句柄 *@param speed 类型 int 串口速度 *@return void */ int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300, B38400, B19200, B9600, B4800, B2400, B1200, B300, }; int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9600, 4800, 2400, 1200, 300, }; void set_speed(int fd, int speed){ int i; int status; struct termios Opt; tcgetattr(fd, &Opt); for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) { if (speed == name_arr[i]) { tcflush(fd, TCIOFLUSH); cfsetispeed(&Opt, speed_arr[i]); cfsetospeed(&Opt, speed_arr[i]); status = tcsetattr(fd1, TCSANOW, &Opt); if (status != 0) { perror("tcsetattr fd1"); return; } tcflush(fd,TCIOFLUSH); } } } |
效验位和停止位的设置:
无效验 | 8位 | Option.c_cflag &= ~PARENB; Option.c_cflag &= ~CSTOPB; Option.c_cflag &= ~CSIZE; Option.c_cflag |= ~CS8; |
奇效验(Odd) | 7位 | Option.c_cflag |= ~PARENB; Option.c_cflag &= ~PARODD; Option.c_cflag &= ~CSTOPB; Option.c_cflag &= ~CSIZE; Option.c_cflag |= ~CS7; |
偶效验(Even) | 7位 | Option.c_cflag &= ~PARENB; Option.c_cflag |= ~PARODD; Option.c_cflag &= ~CSTOPB; Option.c_cflag &= ~CSIZE; Option.c_cflag |= ~CS7; |
Space效验 | 7位 | Option.c_cflag &= ~PARENB; Option.c_cflag &= ~CSTOPB; Option.c_cflag &= &~CSIZE; Option.c_cflag |= CS8; |
设置效验的函数:
/** *@brief 设置串口数据位,停止位和效验位 *@param fd 类型 int 打开的串口文件句柄 *@param databits 类型 int 数据位 取值 为 7 或者8 *@param stopbits 类型 int 停止位 取值为 1 或者2 *@param parity 类型 int 效验类型 取值为N,E,O,,S */ int set_Parity(int fd,int databits,int stopbits,int parity) { struct termios options; if ( tcgetattr( fd,&options) != 0) { perror("SetupSerial 1"); return(FALSE); } options.c_cflag &= ~CSIZE; switch (databits) /*设置数据位数*/ { case 7: options.c_cflag |= CS7; break; case 8: options.c_cflag |= CS8; break; default: fprintf(stderr,"Unsupported data size\n"); return (FALSE); } switch (parity) { case 'n': case 'N': options.c_cflag &= ~PARENB; /* Clear parity enable */ options.c_iflag &= ~INPCK; /* Enable parity checking */ break; case 'o': case 'O': options.c_cflag |= (PARODD | PARENB); /* 设置为奇效验*/ options.c_iflag |= INPCK; /* Disnable parity checking */ break; case 'e': case 'E': options.c_cflag |= PARENB; /* Enable parity */ options.c_cflag &= ~PARODD; /* 转换为偶效验*/ options.c_iflag |= INPCK; /* Disnable parity checking */ break; case 'S': case 's': /*as no parity*/ options.c_cflag &= ~PARENB; options.c_cflag &= ~CSTOPB;break; default: fprintf(stderr,"Unsupported parity\n"); return (FALSE); } /* 设置停止位*/ switch (stopbits) { case 1: options.c_cflag &= ~CSTOPB; break; case 2: options.c_cflag |= CSTOPB; break; default: fprintf(stderr,"Unsupported stop bits\n"); return (FALSE); } /* Set input parity option */ if (parity != 'n') options.c_iflag |= INPCK; tcflush(fd,TCIFLUSH); options.c_cc[VTIME] = 150; /* 设置超时15 seconds*/ options.c_cc[VMIN] = 0; /* Update the options and do it NOW */ if (tcsetattr(fd,TCSANOW,&options) != 0) { perror("SetupSerial 3"); return (FALSE); } return (TRUE); } |
需要注意的是:
如果不是开发终端之类的,只是串口传输数据,而不需要串口来处理,那么使用原始模式(Raw Mode)方式来通讯,设置方式如下:
options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); /*Input*/ options.c_oflag &= ~OPOST; /*Output*/ |
回页首
读写串口
设置好串口之后,读写串口就很容易了,把串口当作文件读写就是。
char buffer[1024];int Length;int nByte;nByte = write(fd, buffer ,Length) |
使用文件操作read函数读取,如果设置为原始模式(Raw Mode)传输数据,那么read函数返回的字符数是实际串口收到的字符数。
可以使用操作文件的函数来实现异步读取,如fcntl,或者select等来操作。
char buff[1024];int Len;int readByte = read(fd,buff,Len); |
回页首
关闭串口
关闭串口就是关闭文件。
close(fd); |
回页首
例子
下面是一个简单的读取串口数据的例子,使用了上面定义的一些函数和头文件
/********************************************************************** 代码说明:使用串口二测试的,发送的数据是字符, 但是没有发送字符串结束符号,所以接收到后,后面加上了结束符号。 我测试使用的是单片机发送数据到第二个串口,测试通过。 **********************************************************************/ #define FALSE -1 #define TRUE 0 /*********************************************************************/ int OpenDev(char *Dev) { int fd = open( Dev, O_RDWR ); //| O_NOCTTY | O_NDELAY if (-1 == fd) { perror("Can't Open Serial Port"); return -1; } else return fd; } int main(int argc, char **argv){ int fd; int nread; char buff[512]; char *dev = "/dev/ttyS1"; //串口二 fd = OpenDev(dev); set_speed(fd,19200); if (set_Parity(fd,8,1,'N') == FALSE) { printf("Set Parity Error\n"); exit (0); } while (1) //循环读取数据 { while((nread = read(fd, buff, 512))>0) { printf("\nLen %d\n",nread); buff[nread+1] = '\0'; printf( "\n%s", buff); } } //close(fd); // exit (0); } |
转自http://www.linuxidc.com/Linux/2011-02/32253.htm
用户常见的数据通信的基本方式可分为并行通信和串行通信。
并行通信是指利用多条数据传输线将一个资料的各位同时传送。特点是传输速度快,适用于短距离通信,但要求传输速度较高的应用场合。
串行通信是指利用一条传输线将资料一位位的顺序传送。特点是通信线路简单,利用简单的线缆就可以实现通信,减低成本,适用于远距离通信,但传输速度慢的应用场合。常用的串口有RS-232-C接口(全称是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”)。
UART控制器:可以工作在Interrupt(中断)模式或者DMA(直接内存访问)模式。据有16字节的FIFO(先入先出寄存器),支持最高波特率可达到230.4Kbps。
UART操作:资料发送、资料接收、产生中断、产生波特率、Loopback模式、红外模式及自动流控制模式。
串口设置包括:波特率、起始位数量、数据位数量、停止位数量和流控协议。在此可以配置波特率为115200、起始位为1b、数据位8b、停止位1b和无流控制协议。
串口一、串口二对应设备名依次是“/dev/ttyS0”、“/dev/ttyS1”。
在Linux下对串口的读写可以使用简单的“read”、“write”函数完成,不同的是需要对串口的其它参数另作设置。
6.4.2 串口设置详情
串口设置主要是设置struct termios结构体成员值:
#include<termios.h>
Struct termio
{
unsigned short c_iflag; /*输入模式标志*/
unsigned short c_oflag; /*输出模式标志*/
unsigned short c_cflag; /*控制模式标志*/
unsigned short c_lfag; /*本地模式标志*/
unsigned short c_line; /*line discipline*/
unsigned short c_cc[NCC]; /*control characters*/
};
通过对c_cflag的赋值,可以设置波特率、字符大小、数据位、停止位、奇偶校验位和硬件流控等。
设置串口属性基本流程:
1. 保存原先串口配置
为了安全起见和以后调试程序方便,可先保存原先串口的配置,使用函数tcgetattr(fd,&oldtio)。该函数得到与fd指向对象的相关参数,并将它们保存于lodtio引用的termios结构中。该函数可以测试配置是否正确、该串口是否可用等。调试成功,函数返回0,失败,函数返回-1.
if(tcgetattr(fd,&oldtio)!=0)
{
perror(“SetupSerial 1”);
return -1;
}
2. 激活选项有CLOCAL和CREAD
CLOCAL和CREAD分别用于本地连接和接受使能,通过位掩码的方式激活这两个选项。
Newtio.c_cflag |= CLOCAL | CREAD;
3. 设置波特率
设置波特率的函数主要有cfsetispeed和cfsetospeed。
cfsetispeed(&newtio,B115200);
cfsetospeed(&newtio,B115200);
一般地用户需要将输入输出函数的波特率设置成一样的。这几个函数在成功时返回0,失败-1。
4. 设置字符大小
没有现成可用函数,需要位掩码。一般先去除数据位中的位掩码,再重新按要求设置。
options.c_cflag &= ~CSIZE; /*mask the character size bits*/
options.c_cflag |= CS8;
5. 设置奇偶校验位
先激活c_cflag中的校验位使能标志PARENB和是否要进行偶校验,同时还要激活c_iflag中的奇偶校验使能。如使能奇校验时,代码如下:
newtio.c_cflag |= PARENB;
newtio.c_cflag |=PARODD;
newtio.c_iflag |= (INPCK | ISTRIP);
而使能偶校验代码为:
newtio.c_iflag |= (INPCK | ISTRIP);
newtio.c_cflag |= PARENB;
newtio.c_cflag &= ~PAROOD;
6. 设置停止位
通过激活c_cflag中的CSTOPB而实现的。若停止位为1,则清除CSTOPB,若停止位为0,则激活CSTOPB。下面是停止位为1时的代码:
newtio.c_cflag &= ~CSTOPB;
7. 设置最少字符和等待时间
在对接收字符和等待时间没有特别要求的情况下,可以将其设置为0:
newtio.c_cc[VTIME] =0;
newtio.c_cc[VMIN]=0;
8. 处理要写入的引用对象
在串口重新设置之后,在之前要写入的引用对象要重新处理,可调用函数tcflush(fd,queue_selector)来处理要写入引用的对象。对于为传输的数据,或收到但未读取的数据,其处理方法取决于queue_selector的值。
Queue_selector可能取值:
TCIFLUSH:刷新收到的数据但不读
TCOFLUSH:刷新写入的数据但不传送
TCIOLFLUSH:同时刷新收到的数据但不读,并且刷新写入的数据但不传送
本例采用一:
tcflush(fd, TCIFLUSH)
9. 激活配置
用到函数tcsetattr:
函数原型:tcsetattr(fd,OPTION,&newtio);
这里的newtio就是termios类型的变量,OPTION可能的取值如下:
TCSANOW:改变的配置立即生效
TCSADRAIN:改变的配置在所有写入fd的输出都结束后生效
TCSAFLUSH:改变的配置自爱所有写入fd引用对象的输出都被结束后生效,所有已接受但为读入的输入都在改变发生前丢弃。
该函数调用成功返回0,失败-1.
if((tcsetattr(fd,TCSANOW,&newtio))!=0)
{
perror(“com set error”);
return -1;
}
/*串口配置的完整函数,为了函数的通用性,通常将常用的选项都在函数中列出,可大大方便以后用户的调试使用*/
int set_opt(int fd,int nSpeed,int nBits,char nEvent,int nStop)
{
struct termios newtio,oldtio;
/*保存测试现有串口参数设置,在这里如果串口号等出错,会有相关的出错信息*/
if(tcgetattr(fd,&oldtio)!=0)
{
perror(“SetupSerial 1”);
return -1;
}
bzero(&newtio,sizeof(newtio));
/*步骤一,设置字符大小*/
newtio.c_cflag |= CLOCAL | CREAD;
newtio.c_cflag &= ~CSIZE;
/*设置停止位*/
switch(nBits)
{
case 7:
newtio.c_cflag |=CS7;
break;
case 8:
newtio.c_cflag |=CS8;
break;
}
/*设置奇偶校验位*/
switch(nEvent)
{
case 'O'://奇数
newtio.c_cflag |= PARENB;
newtio.c_cflag |=PARODD;
newtio.c_iflag |= (INPCK | ISTRIP);
break;
case 'E'://偶数
newtio.c_iflag |= (INPCK | ISTRIP);
newtio.c_cflag |= PARENB;
newtio.c_cflag &= ~PARODD;
case 'N'://无奇偶校验位
newtio.c_cflag &= ~PARENB;
break;
}
/*设置波特率*/
switch(nSpeed)
{
case 2400:
cfsetispeed(&newtio,B2400);
cfsetospeed(&newtio,B2400);
break;
case 4800:
cfsetispeed(&newtio,B4800);
cfsetospeed(&newtio,B4800);
break;
case 9600:
cfsetispeed(&newtio,B9600);
cfsetospeed(&newtio,B9600);
break;
case 115200:
cfsetispeed(&newtio,B115200);
cfsetospeed(&newtio,B115200);
break;
case 460800:
cfsetispeed(&newtio,B460800);
cfsetospeed(&newtio,B460800);
break;
default:
cfsetispeed(&newtio,B9600);
cfsetospeed(&newtio,B9600);
break;
}
/*设置停止位*/
if(nStop==1)
newtio.c_cflag &= ~CSTOPB;
else if(nStop==2)
newtio.c_cflag |= CSTOPB;
/*设置等待时间和最小接收字符*/
newtio.c_cc[VTIME] =0;
newtio.c_cc[VMIN]=0;
/*处理未接受字符*/
tcflush(fd, TCIFLUSH);
/*激活新配置*/
if((tcsetattr(fd,TCSANOW,&newtio))!=0)
{
perror(“com set error”);
return -1;
}
printf("set done!\n");
return 0;
}