一个高效的内存池实现

在高效C++编程中看到一个不错的内存池实现方案,这里共享下,大家看看有什么不足。
代码很简单,如下:
template<typename T>
class CMemoryPool
{
     public:
         enum { EXPANSION_SIZE = 32};

        CMemoryPool(unsigned  int nItemCount = EXPANSION_SIZE)
        {
            ExpandFreeList(nItemCount);
        }
        
        ~CMemoryPool()
        {
             // free all memory in the list
            CMemoryPool<T>* pNext = NULL;
             for(pNext = m_pFreeList; pNext != NULL; pNext = m_pFreeList)
            {
                m_pFreeList = m_pFreeList->m_pFreeList;
                delete []( char*)pNext;
            }
        }

         void* Alloc(unsigned  int  /* size */)
        {
             if(m_pFreeList == NULL)
            {
                ExpandFreeList();
            }
            
             // get free memory from head
            CMemoryPool<T>* pHead = m_pFreeList;
            m_pFreeList = m_pFreeList->m_pFreeList;
             return pHead;
        }

         void Free( void* p)
        {
             // push the free memory back to list
            CMemoryPool<T>* pHead = static_cast<CMemoryPool<T>*>(p);
            pHead->m_pFreeList = m_pFreeList;
            m_pFreeList = pHead;
        }

     protected:
         // allocate memory and push to the list
         void ExpandFreeList(unsigned nItemCount = EXPANSION_SIZE)
        {
            unsigned  int nSize =  sizeof(T) >  sizeof(CMemoryPool<T>*) ?  sizeof(T) :  sizeof(CMemoryPool<T>*);
            CMemoryPool<T>* pLastItem = static_cast<CMemoryPool<T>*>(static_cast< void*>( new  char[nSize]));
            m_pFreeList = pLastItem;
             for( int i=0; i<nItemCount-1; ++i)
            {
                pLastItem->m_pFreeList = static_cast<CMemoryPool<T>*>(static_cast< void*>( new  char[nSize]));
                pLastItem = pLastItem->m_pFreeList;
            }

            pLastItem->m_pFreeList = NULL;
        }

     private:
        CMemoryPool<T>* m_pFreeList;
};

它的实现思想就是每次从List的头上取内存, 如果取不到则重新分配一定数量; 用完后把内存放回List头部,这样的话效率很高,因为每次List上可以取到的话,肯定是空闲的内存。

当然上面的代码只是针对单线程的,要支持多线程的话也很简单,外面加一层就可以了,
代码如下:
class CCriticalSection
{
public:
    CCriticalSection()
    {
        InitializeCriticalSection(&m_cs);
    }

    ~CCriticalSection()
    {
        DeleteCriticalSection(&m_cs);
    }

     void Lock()
    {
        EnterCriticalSection(&m_cs); 
    }

     void Unlock()
    {
        LeaveCriticalSection(&m_cs);
    }

protected:
    CRITICAL_SECTION m_cs;
};

template<typename POOLTYPE, typename LOCKTYPE>
class CMTMemoryPool
{
     public:
         void* Alloc(unsigned  int size)
        {
             void* p = NULL;
            m_lock.Lock();
            p = m_pool.Alloc(size);
            m_lock.Unlock();

             return p;
        }

         void Free( void* p)
        {
            m_lock.Lock();
            m_pool.Free(p);
            m_lock.Unlock();    
        }

     private:
        POOLTYPE m_pool;
        LOCKTYPE m_lock;
};

这是我的测试代码:
#include <iostream>
#include <windows.h>

using  namespace std;

#include "MemoryPool.h"
#include "MTMemoryPool.h"

class CTest
{
public:
     int m_n;
     int m_n1;

     voidoperator  new(size_t size)
    {
         void* p = s_pool->Alloc(size);
         return p;
    }

     void  operator delete( void* p, size_t size)
    {
        s_pool->Free(p);
    }

     static  void NewPool()
    {
         // s_pool = new CMemoryPool<CTest>;
        s_pool =  new CMTMemoryPool<CMemoryPool<CTest>, CCriticalSection>;
    }

     static  void DeletePool()
    {
        delete s_pool;
        s_pool = NULL;
    }
    
     // static CMemoryPool<CTest>* s_pool;
     static CMTMemoryPool<CMemoryPool<CTest>, CCriticalSection>* s_pool;
};

// CMemoryPool<CTest>* CTest::s_pool = NULL;
CMTMemoryPool<CMemoryPool<CTest>, CCriticalSection>* CTest::s_pool = NULL;

void testFun()
{
     int i;
     const  int nLoop = 10;
     const  int nCount = 10000;
    
     for( int j = 0; j<nLoop; ++j)
    {
        typedef CTest* LPTest;
        LPTest arData[nCount];
         for(i=0;i <nCount; ++i)
        {
            arData[i] =  new CTest;
        }

         for(i=0;i <nCount; ++i)
        {
            delete arData[i];
        }
    }
}

int main( int argc,  char* argv[])
{
    {
        unsigned  int dwStartTickCount = GetTickCount();

        CTest::NewPool();

        testFun();
        
        CTest::DeletePool();
        
        cout << "total cost" << GetTickCount() - dwStartTickCount << endl;
    }


    system("pause");

     return 0;
}
在我机器上测试结果比系统默认的CRT实现高效N倍。

你可能感兴趣的:(一个高效的内存池实现)