Lock是JDK1.5种新增的同步工具,其实真正的实现Lock接口的类就三个,ReentrantLock和ReentrantReadWriteLock的两个内部类(ReadLock和WriteLock实现了Lock的接口);
ReentrantLock 实现了标准的互斥操作,也就是一次只能有一个线程持有锁,也即所谓独占锁的概念。我们也一直在强调这个特点。显然这个特点在一定程度上面减低了吞吐量,实际上独占锁是一种保守的锁策略,在这种情况下任何“读/读”,“写/读”,“写/写”操作都不能同时发生。
public class ReentrantLockTest { // 公平锁 private Lock lock = new ReentrantLock(true); // 资源 private Resource resource = new Resource(); public static void main(String[] args) { final ReentrantLockTest test = new ReentrantLockTest(); ExecutorService service = Executors.newCachedThreadPool(); for (int i = 0; i < 20; i++) { service.submit(new Runnable() { @Override public void run() { Random random = ThreadLocalRandom.current(); test.write(random.nextInt()); } }); service.submit(new Runnable() { @Override public void run() { test.read(); } }); } service.shutdown(); } private void write(final int value) { // 如果可以获取锁 if (lock.tryLock()) { try { // 执行业务逻辑 System.out.println(Thread.currentThread().getName() + "获取了锁 写入 value=" + value); resource.setValue(String.valueOf(value)); } finally { // 释放锁 System.out.println(Thread.currentThread().getName() + "释放了锁"); lock.unlock(); } } } void read() { if (lock.tryLock()) { try { System.out.println(Thread.currentThread().getName() + "获取了锁 value=" + resource.getValue()); } finally { System.out.println(Thread.currentThread().getName() + "释放了锁"); lock.unlock(); } } } }
测试的结果是:
pool-1-thread-1获取了锁 写入 value=2111184282 pool-1-thread-1释放了锁 pool-1-thread-2获取了锁 value=2111184282 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=-1679499784 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=1678350750 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=1678350750 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=1678350750 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=152101866 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=152101866 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=1147384711 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=1147384711 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=-2130483959 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=-2130483959 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=417404714 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=417404714 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=-405288963 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=-405288963 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=-139338780 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=-139338780 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=-745627488 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=-745627488 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=-1455461843 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=-1455461843 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=-1129478741 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 写入 value=-1560021948 pool-1-thread-2释放了锁
但实际应用场景中我们会经常遇到这样的情况:某些资源需要并发访问,并且大部分时间是用来进行读操作的,写操作比较少,而锁是有一定的开销的,当并发比较大 的时候,锁的开销就比较可观了。所以如果可能的话就尽量少用锁,如果非要用锁的话就尝试看能否能实现读写分离,将其改造为读写锁。
// 公平锁 private ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock(); // 写锁 private Lock writeLock = readWriteLock.writeLock(); // 读锁 private Lock readLock = readWriteLock.readLock(); // 资源 private Resource resource = new Resource(); public static void main(String[] args) { final ReentrantReadWriteLockTest test = new ReentrantReadWriteLockTest(); ExecutorService service = Executors.newCachedThreadPool(); for (int i = 0; i < 10; i++) { service.submit(new Runnable() { @Override public void run() { Random random = ThreadLocalRandom.current(); test.write(random.nextInt()); } }); service.submit(new Runnable() { @Override public void run() { test.read(); } }); } service.shutdown(); } private void write(final int value) { // 如果可以获取锁 if (writeLock.tryLock()) { try { // 执行业务逻辑 System.out.println(Thread.currentThread().getName() + "获取了锁 写入 value=" + value); resource.setValue(String.valueOf(value)); } finally { // 释放锁 System.out.println(Thread.currentThread().getName() + "释放了锁"); writeLock.unlock(); } } } private void read() { if (readLock.tryLock()) { try { System.out.println(Thread.currentThread().getName() + "获取了锁 value=" + resource.getValue()); } finally { System.out.println(Thread.currentThread().getName() + "释放了锁"); readLock.unlock(); } } } }
测试结果是:
pool-1-thread-1获取了锁 写入 value=-702575113 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 value=-702575113 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 写入 value=-1619148924 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 value=-1619148924 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 写入 value=-1469315956 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 value=-1469315956 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 写入 value=1667915800 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 value=1667915800 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 写入 value=-1280947014 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 value=-1280947014 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 写入 value=1208950056 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 value=1208950056 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 写入 value=1089508899 pool-1-thread-1释放了锁 pool-1-thread-1获取了锁 写入 value=760397757 pool-1-thread-1释放了锁 pool-1-thread-2获取了锁 value=760397757 pool-1-thread-2释放了锁 pool-1-thread-2获取了锁 value=760397757 pool-1-thread-1获取了锁 value=760397757 pool-1-thread-2释放了锁 pool-1-thread-1释放了锁
可以发现写锁是独占锁,读锁是共享锁,那么读锁是不是无限共享呢?实际上不是的,最大同时可以背65534个共享。
public class ReentrantTest { private Lock lock = new ReentrantReadWriteLock().readLock(); static long count = 0; /** * * @param args * @author zhangwei<[email protected]> */ public static void main(String[] args) { ReentrantTest test = new ReentrantTest(); for (;;) { if (test.lock.tryLock()) { System.out.println(count++); } } } }
65530 65531 65532 65533 65534 Exception in thread "main" java.lang.Error: Maximum lock count exceeded at java.util.concurrent.locks.ReentrantReadWriteLock$Sync.tryReadLock(ReentrantReadWriteLock.java:588) at java.util.concurrent.locks.ReentrantReadWriteLock$ReadLock.tryLock(ReentrantReadWriteLock.java:803) at org.demo.core.lock.ReentrantTest.main(ReentrantTest.java:34)
锁降级 写线程获取写入锁后可以获取读取锁,然后释放写入锁,这样就从写入锁变成了读取锁,从而实现锁降级的特性。
public class DegradeReentrantReadWriteLockTest2 { // 公平锁 private ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock(); // 写锁 private Lock writeLock = readWriteLock.writeLock(); // 读锁 private Lock readLock = readWriteLock.readLock(); // 资源 private Resource resource = new Resource(); public static void main(String[] args) { final DegradeReentrantReadWriteLockTest2 test = new DegradeReentrantReadWriteLockTest2(); ExecutorService service = Executors.newCachedThreadPool(); for (int i = 0; i < 10; i++) { service.submit(new Runnable() { @Override public void run() { Random random = ThreadLocalRandom.current(); test.writeAndRead(random.nextInt()); } }); service.submit(new Runnable() { @Override public void run() { test.read(); } }); } service.shutdown(); } private void writeAndRead(final int value) { // 如果可以获取锁 try { try { // 写锁锁定 writeLock.lock(); // 执行业务逻辑 System.out.println(Thread.currentThread().getName() + "获取了写锁 写入 value=" + value); resource.setValue(String.valueOf(value)); } finally { System.out.println(Thread.currentThread().getName() + "写锁降级为读锁"); // 读锁锁定 readLock.lock(); // 释放写锁 writeLock.unlock(); } System.out.println(resource.getValue()); } finally { // 释放读锁 System.out.println(Thread.currentThread().getName() + "释放了读锁"); readLock.unlock(); } } private void read() { if (readLock.tryLock()) { try { System.out.println(Thread.currentThread().getName() + "获取了读锁 value=" + resource.getValue()); } finally { System.out.println(Thread.currentThread().getName() + "释放了读锁"); readLock.unlock(); } } } }
公平锁的实现:公平性是指最先试图获取锁的线程一定可以保证最先获取
如果当前线程之前还有线程在等待,获取锁失败!通过队列排序保证获取锁的公平性。
/** * Sync object for fair locks */ static final class FairSync extends Sync { private static final long serialVersionUID = -3000897897090466540L; final void lock() { acquire(1); } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. */ protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } }