学习算法,怎么可以不懂排序?但很多时候,我们习惯了用 sort 和 qsort,对于具体排序,我们也许真忘光了。我们先从O(n^2)的常用排序开始。
冒泡排序(Bubble Sort):
说起排序就不能不说冒泡(Bubble Sort),它非常简单,维基中这样解释“重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢‘浮’到数列的顶端。”
复杂度:
最差时间复杂度:O(n^2)
最优时间复杂度:O(n^2)
平均时间复杂度:O(n^2)
稳定性:稳定
我写冒泡通常这样写:
void bubbleSort(int arr[],int n) { for(int i = 0;i < n;++i) { for(int j = i+1;j < n;++j) { if(arr[i] > arr[j]) { int t = arr[j]; arr[j] = arr[i]; arr[i] = t; } } } }
冒泡还可以这样写:
void bubbleSort(int arr[],int n) { for(int i = 0;i < n-1;++i) { for(int j = 0;j < n-i-1;++j) { if(arr[j] > arr[j+1]) { int t = arr[j+1]; arr[j+1] = arr[j]; arr[j] = t; } } } }
冒泡也可以优化,但毕竟是一种效率低下的算法,无法摆平均O(n^2) 的命运。
一种常见的优化就是记录每一次遍历的过程是否有交换值,没有的话说明后面已经是有序的,直接跳出循环
void bubbleSort(int arr[],int n) { for(int i = 0;i < n;++i) { bool flag = false; for(int j = i+1;j < n;++j) { if(arr[i] > arr[j]) { int t = arr[j]; arr[j] = arr[i]; arr[i] = t; flag = true; } if(!flag) break; } } }
插入排序(Insertion Sort)也是一种平均O(n^2)的排序算法。“它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。”维基的这幅图很直观的解释了插入排序:
算法步骤为:
1、从有序数列 { a[0] } 和无序数列 { a[1],a[2],a[3],…,a[n-1] }开始进行排序;
2、处理第i个元素时(i=1,2,3,…,n-1),数列 { a[0],a[1],a[2],…,a[i-1] }是已有序的,而数列{ a[i],a[i+1],…,a[n-1] }是无序的。用a[i]与a[i-1],a[ i-2],…,a[0]进行比较,找出合适的位置将a[i]插入;
3、重复第二步,共进行n-i次插入处理,数列全部有序。
复杂度:
最差时间复杂度:O(n^2)
最优时间复杂度:O(n^2)
平均时间复杂度:O(n^2)
稳定性:稳定
实现:
void insertSort(int arr[], int n) { for (int i = 1; i < n; i++) if (arr[i] < arr[i - 1]) { int j,t = arr[i]; for (j = i - 1; j >= 0 && arr[j] > t; j--) arr[j + 1] = arr[j]; arr[j + 1] = t; } }
选择排序(Selection Sort):
基本思想为:“首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。”类似于冒泡,也很容易理解,但它的交换次数明显比冒泡少得多,n比较小的时候,选择排序明显比冒泡快。
复杂度:
最差时间复杂度:O(n^2)
最优时间复杂度:O(n^2)
平均时间复杂度:O(n^2)
稳定性:不稳定
为什么是不稳定呢?看一个例子:对 4 5 6 4 2 3 进行选择排序。
开始时,我们找到最小元素 2 并把它和第一个元素 4 交换,这时 序列变成 2 5 6 4 4 2 3,好像没有问题是吗?但是,现在,两个 4 的位置和原来的位置相比已经改变了!所以说选择排序时不稳定的。这点要注意,因为也许有时候会在你毫无察觉的情况下导致一些问题。
实现:
void selectionSort(int arr[], int n) { for (int i = 0; i < n; i++) { int index = i; //找出最小元素的索引 for(int j = i+1;j < n;++j) { if(arr[index] > arr[j]) index = j; } //把找到的最小元素和 arr[i] 交换 if(index != i) { int t = arr[index]; arr[index] = arr[i]; arr[i] = t; } } }