http://www.codeforces.com/contest/620/problem/F
You are given an array with n integers ai and m queries. Each query is described by two integers (lj, rj).
Let's define the function . The function is defined for only u ≤ v.
For each query print the maximal value of the function f(ax, ay) over all lj ≤ x, y ≤ rj, ax ≤ ay.
The first line contains two integers n, m (1 ≤ n ≤ 5·104, 1 ≤ m ≤ 5·103) — the size of the array and the number of the queries.
The second line contains n integers ai (1 ≤ ai ≤ 106) — the elements of the array a.
Each of the next m lines contains two integers lj, rj (1 ≤ lj ≤ rj ≤ n) – the parameters of the j-th query.
For each query print the value aj on a separate line — the maximal value of the function f(ax, ay) over all lj ≤ x, y ≤ rj, ax ≤ ay.
6 3
1 2 3 4 5 6
1 6
2 5
3 4
7
7
7
题目中定义了f(i,j) = i^(i+1)^(i+2)^...^j
给你n个数,然后m次询问
每次问你l,r区间内,f(a[i],a[j])最大是多少,l<=i,j<=r
正解的话是莫队+字典树
复杂度是(n+m)lognsqrt(n)
但是这道题也有(n^2+nm)的算法,两个算法的复杂度差距不是很大
并且第二种好写的多……
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+5;
int f[maxn];
int a[maxn];
int G[maxn];
int l[maxn],r[maxn],ans[maxn];
int main()
{
for(int i=1;i<maxn;i++)
f[i]=f[i-1]^i;
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=m;i++)
scanf("%d%d",&l[i],&r[i]);
for(int i=1;i<=n;i++)
{
int mx = 0;
for(int j=i;j<=n;j++)
{
int cnt = f[a[j]]^f[a[i]];
if(a[j]>a[i])
cnt^=a[i];
else
cnt^=a[j];
mx = max(cnt,mx);
G[j]=mx;
}
for(int j=1;j<=m;j++)
if(l[j]<=i&&i<=r[j])
ans[j]=max(ans[j],G[r[j]]);
}
for(int i=1;i<=m;i++)
printf("%d\n",ans[i]);
}