开源的实时计算平台storm简介

  • 实现一个实时计算系统

全量数据处理使用的大多是鼎鼎大名的hadoop或者hive,作为一个批处理系统,hadoop以其吞吐量大、自动容错等优点,在海量数据处理上 得到了广泛的使用。但是,hadoop不擅长实时计算,因为它天然就是为批处理而生的,这也是业界一致的共识。否则最近这两年也不会有 s4,storm,puma这些实时计算系统如雨后春笋般冒出来啦。先抛开s4,storm,puma这些系统不谈,我们首先来看一下,如果让我们自己设 计一个实时计算系统,我们要解决哪些问题。

  1. 低延迟。都说了是实时计算系统了,延迟是一定要低的。

  2. 高性能。性能不高就是浪费机器,浪费机器是要受批评的哦。

  3. 分布式。系统都是为应用场景而生的,如果你的应用场景、你的数据和计算单机就能搞定,那么不用考虑这些复杂的问题了。我们所说的是单机搞不定的情况。

  4. 可扩展。伴随着业务的发展,我们的数据量、计算量可能会越来越大,所以希望这个系统是可扩展的。

  5. 容错。这是分布式系统中通用问题。一个节点挂了不能影响我的应用。

好,如果仅仅需要解决这5个问题,可能会有无数种方案,而且各有千秋,随便举一种方案,使用消息队列+分布在各个机器上的工作进程就ok啦。我们再继续往下看。

  1. 容易在上面开发应用程序。亲,你设计的系统需要应用程序开发人员考虑各个处理组件的分布、消息的传递吗?如果是,那有点麻烦啊,开发人员可能会用不好,也不会想去用。

  2. 消息不丢失。用户发布的一个宝贝消息不能在实时处理的时候给丢了,对吧?更严格一点,如果是一个精确数据统计的应用,那么它处理的消息要不多不少才行。这个要求有点高哦。

  3. 消息严格有序。有些消息之间是有强相关性的,比如同一个宝贝的更新和删除操作消息,如果处理时搞乱顺序完全是不一样的效果了。

不知道大家对这些问题是否都有了自己的答案,下面让我们带着这些问题,一起来看一看storm的解决方案吧。

  • Storm是什么

如果只用一句话来描述storm的话,可能会是这样:分布式实时计算系统。按照storm作者的说法,storm对于实时计算的意义类似于 hadoop对于批处理的意义。我们都知道,根据google mapreduce来实现的hadoop为我们提供了map, reduce原语,使我们的批处理程序变得非常地简单和优美。同样,storm也为实时计算提供了一些简单优美的原语。我们会在第三节中详细介绍。

我们来看一下storm的适用场景。

  1. 流数据处理。Storm可以用来处理源源不断流进来的消息,处理之后将结果写入到某个存储中去。

  2. 分布式rpc。由于storm的处理组件是分布式的,而且处理延迟极低,所以可以作为一个通用的分布式rpc框架来使用。当然,其实我们的搜索引擎本身也是一个分布式rpc系统。

说了半天,好像都是很玄乎的东西,下面我们开始具体讲解storm的基本概念和它内部的一些实现原理吧。

  • Storm的基本概念

首先我们通过一个 storm 和hadoop的对比来了解storm中的基本概念。


Hadoop Storm
系统角色 JobTracker Nimbus
TaskTracker Supervisor
Child Worker
应用名称 Job Topology
组件接口 Mapper/Reducer Spout/Bolt

表3-1

接下来我们再来具体看一下这些概念。

  1. Nimbus:负责资源分配和任务调度。

  2. Supervisor:负责接受nimbus分配的任务,启动和停止属于自己管理的worker进程。

  3. Worker:运行具体处理组件逻辑的进程。

  4. Task:worker中每一个spout/bolt的线程称为一个task. 在storm0.8之后,task不再与物理线程对应,同一个spout/bolt的task可能会共享一个物理线程,该线程称为executor。

下面这个图描述了以上几个角色之间的关系。
开源的实时计算平台storm简介_第1张图片
图3-1

  1. Topology:storm中运行的一个实时应用程序,因为各个组件间的消息流动形成逻辑上的一个拓扑结构。

  2. Spout:在一个topology中产生源数据流的组件。通常情况下spout会从外部数据源中读取数据,然后转换为topology 内部的源数据。Spout是一个主动的角色,其接口中有个nextTuple()函数,storm框架会不停地调用此函数,用户只要在其中生成源数据即 可。

  3. Bolt:在一个topology中接受数据然后执行处理的组件。Bolt可以执行过滤、函数操作、合并、写数据库等任何操作。Bolt 是一个被动的角色,其接口中有个execute(Tuple input)函数,在接受到消息后会调用此函数,用户可以在其中执行自己想要的操作。

  4. Tuple:一次消息传递的基本单元。本来应该是一个key-value的map,但是由于各个组件间传递的tuple的字段名称已经事先定义好,所以tuple中只要按序填入各个value就行了,所以就是一个value list.

  5. Stream:源源不断传递的tuple就组成了stream。

10. stream grouping:即消息的partition方法。Storm中提供若干种实用的grouping方式,包括shuffle, fields hash, all, global, none, direct和localOrShuffle等

相比于s4, puma等其他实时计算系统,storm最大的亮点在于其记录级容错和能够保证消息精确处理的事务功能。下面就重点来看一下这两个亮点的实现原理。

  • Storm记录级容错的基本原理

首先来看一下什么叫做记录级容错?storm允许用户在spout中发射一个新的源tuple时为其指定一个message id, 这个message id可以是任意的object对象。多个源tuple可以共用一个message id,表示这多个源 tuple对用户来说是同一个消息单元。storm中记录级容错的意思是说,storm会告知用户每一个消息单元是否在指定时间内被完全处理了。那什么叫 做完全处理呢,就是该message id绑定的源tuple及由该源tuple后续生成的tuple经过了topology中每一个应该到达的bolt的处理。举个例子。在图4-1中,在 spout由message 1绑定的tuple1和tuple2经过了bolt1和bolt2的处理生成两个新的tuple,并最终都流向了bolt3。当这个过程完成处理完时,称 message 1被完全处理了。
开源的实时计算平台storm简介_第2张图片
图4-1

在storm的topology中有一个系统级组件,叫做acker。这个acker的任务就是追踪从spout中流出来的每一个message id绑定的若干tuple的处理路径,如果在用户设置的最大超时时间内这些tuple没有被完全处理,那么acker就会告知spout该消息处理失败 了,相反则会告知spout该消息处理成功了。在刚才的描述中,我们提到了”记录tuple的处理路径”,如果曾经尝试过这么做的同学可以仔细地思考一下 这件事的复杂程度。但是storm中却是使用了一种非常巧妙的方法做到了。在说明这个方法之前,我们来复习一个数学定理。

A xor A = 0.

A xor B…xor B xor A = 0,其中每一个操作数出现且仅出现两次。

storm中使用的巧妙方法就是基于这个定理。具体过程是这样的:在spout中系统会为用户指定的message id生成一个对应的64位整数,作为一个root id。root id会传递给acker及后续的bolt作为该消息单元的唯一标识。同时无论是spout还是bolt每次新生成一个tuple的时候,都会赋予该 tuple一个64位的整数的id。Spout发射完某个message id对应的源tuple之后,会告知acker自己发射的root id及生成的那些源tuple的id。而bolt呢,每次接受到一个输入tuple处理完之后,也会告知acker自己处理的输入tuple的id及新生 成的那些tuple的id。Acker只需要对这些id做一个简单的异或运算,就能判断出该root id对应的消息单元是否处理完成了。下面通过一个图示来说明这个过程。

图4-1 spout中绑定message 1生成了两个源tuple,id分别是0010和1011.
开源的实时计算平台storm简介_第3张图片
图4-2 bolt1处理tuple 0010时生成了一个新的tuple,id为0110.

图4-3 bolt2处理tuple 1011时生成了一个新的tuple,id为0111.
开源的实时计算平台storm简介_第4张图片
图4-4 bolt3中接收到tuple 0110和tuple 0111,没有生成新的tuple.

可能有些细心的同学会发现,容错过程存在一个可能出错的地方,那就是,如果生成的tuple id并不是完全各异的,acker可能会在消息单元完全处理完成之前就错误的计算为0。这个错误在理论上的确是存在的,但是在实际中其概率是极低极低的,完全可以忽略。

  • Storm的事务拓扑

事务拓扑(transactional topology)是storm0.7引入的特性,在最近发布的0.8版本中已经被封装为Trident,提供了更加便利和直观的接口。因为篇幅所限,在此对事务拓扑做一个简单的介绍。

事务拓扑的目的是为了满足对消息处理有着极其严格要求的场景,例如实时计算某个用户的成交笔数,要求结果完全精确,不能多也不能少。Storm的事 务拓扑是完全基于它底层的spout/bolt/acker原语实现的,通过一层巧妙的封装得出一个优雅的实现。个人觉得这也是storm最大的魅力之 一。

事务拓扑简单来说就是将消息分为一个个的批(batch),同一批内的消息以及批与批之间的消息可以并行处理,另一方面,用户可以设置某些bolt 为committer,storm可以保证committer的finishBatch()操作是按严格不降序的顺序执行的。用户可以利用这个特性通过简 单的编程技巧实现消息处理的精确。

=

你可能感兴趣的:(开源的实时计算平台storm简介)