点击打开链接
用到的计算几何中的内容至今不大懂,目前练习并查集,以后待续、、、、
1、题目大意:
给你一些操作,P后边输入四个值,分别代表一条线段的起点、终点坐标,
当输入Q时,后边输入一个整形值K,输出第k条线段所在的集合中包含的线段的个数
2、思路:用并查集做
当输入P时,判断后边输入的线段的起点和终点时,判断跟之前的线段有没有相交,如果有相交,就merge()合并,
如果输入的是Q时,就打印出当前线段所在集合的个数
3、题目:
Segment set Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2386 Accepted Submission(s): 924 Problem Description A segment and all segments which are connected with it compose a segment set. The size of a segment set is the number of segments in it. The problem is to find the size of some segment set. Input In the first line there is an integer t - the number of test case. For each test case in first line there is an integer n (n<=1000) - the number of commands. There are two different commands described in different format shown below: P x1 y1 x2 y2 - paint a segment whose coordinates of the two endpoints are (x1,y1),(x2,y2). Q k - query the size of the segment set which contains the k-th segment. k is between 1 and the number of segments in the moment. There is no segment in the plane at first, so the first command is always a P-command. Output For each Q-command, output the answer. There is a blank line between test cases. Sample Input 1 10 P 1.00 1.00 4.00 2.00 P 1.00 -2.00 8.00 4.00 Q 1 P 2.00 3.00 3.00 1.00 Q 1 Q 3 P 1.00 4.00 8.00 2.00 Q 2 P 3.00 3.00 6.00 -2.00 Q 5 Sample Output 1 2 2 2 5 Author LL Source HDU 2006-12 Programming Contest Recommend
3、代码:
#include<stdio.h> #include<iostream> using namespace std; int set[1010]; int num[1010]; struct point { double x,y; }; struct edge { point a; point b; }e[1010]; int find(int x) { int r=x; while(r!=set[r]) r=set[r]; int i=x; while(i!=r) { int j=set[i]; set[i]=r; i=j; } return r; } void merge(int x,int y) { int fx=find(x); int fy=find(y); if(fx!=fy) { set[fx]=fy; num[fy]+=num[fx]; } } double xmult(point a,point b,point c) //大于零代表a,b,c左转 { return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x); } bool OnSegment(point a,point b,point c) //a,b,c共线时有效 { return c.x>=min(a.x,b.x)&&c.x<=max(a.x,b.x)&&c.y>=min(a.y,b.y)&&c.y<=max(a.y,b.y); } bool Cross(point a,point b,point c,point d) //判断ab 与cd是否相交 { double d1,d2,d3,d4; d1=xmult(c,d,a); d2=xmult(c,d,b); d3=xmult(a,b,c); d4=xmult(a,b,d); if(d1*d2<0&&d3*d4<0) return 1; else if(d1==0&&OnSegment(c,d,a)) return 1; else if(d2==0&&OnSegment(c,d,b)) return 1; else if(d3==0&&OnSegment(a,b,c)) return 1; else if(d4==0&&OnSegment(a,b,d)) return 1; return 0; } int main() { int t,n,k,tmp,i,j; char s[10]; scanf("%d",&t); while(t--) { scanf("%d",&n); k=0; for(int i=1;i<=n;i++) { set[i]=i; num[i]=1; } for(int i=1;i<=n;i++) { scanf("%s",s); if(s[0]=='P') { k++; scanf("%lf%lf%lf%lf",&e[k].a.x,&e[k].a.y,&e[k].b.x,&e[k].b.y); for(int j=1;j<k;j++) { if(find(k)!=find(j)&&Cross(e[k].a,e[k].b,e[j].a,e[j].b)) merge(k,j); } } else if(s[0]=='Q') { scanf("%d",&tmp); printf("%d\n",num[find(tmp)]); } } if(t)//There is a blank line between test cases.注意最后一个样例不用输出空行 printf("\n"); } return 0; } /* 2 10 P 1.00 1.00 4.00 2.00 P 1.00 -2.00 8.00 4.00 Q 1 P 2.00 3.00 3.00 1.00 Q 1 Q 3 P 1.00 4.00 8.00 2.00 Q 2 P 3.00 3.00 6.00 -2.00 Q 5 3 P 1.00 1.00 4.00 2.00 P 1.00 -2.00 8.00 4.00 Q 1 */