BZOJ 2280 Poi2011 Plot 二分答案+随机增量法

题目大意:给定n个点,要求分成m段,使每段最小覆盖圆半径的最大值最小

二分答案,然后验证的时候把点一个个塞进最小覆盖圆中,若半径超了就分成一块……

等等你在跟我说不随机化的随机增量法?

好吧

那么对于一个点pos,我们要计算最大的bound满足[pos,bound]区间内的最小覆盖圆半径不超过二分的值

直接上二分是不可取的,因为我们要求m次,如果每次都验证一遍[1,n/2]直接就炸了

我们可以这么搞

首先判断[pos,pos+1-1]是否满足要求

然后判断[pos,pos+2-1]是否满足要求

然后判断[pos,pos+4-1]是否满足要求

然后判断[pos,pos+8-1]是否满足要求

...

直到找到一个不满足要求2^k的为止,然后我们在[2^(k-1),2^k]区间内二分

这样可以保证复杂度为O(nlognlog(limit/eps)) 不过常数巨大。。。。

居然直接A了 没卡掉OJ真是差评

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define M 100100
#define EPS 1e-10
using namespace std;
typedef long double ld;
struct Point{
    ld x,y;
    Point() {}
    Point(ld _,ld __):
        x(_),y(__) {}
    friend istream& operator >> (istream &_,Point &p)
    {
        double x,y;
        scanf("%lf%lf",&x,&y);
        p.x=x;p.y=y;
        return _;
    }
    friend Point operator + (const Point &p1,const Point &p2)
    {
        return Point(p1.x+p2.x,p1.y+p2.y);
    }
    friend Point operator - (const Point &p1,const Point &p2)
    {
        return Point(p1.x-p2.x,p1.y-p2.y);
    }
    friend ld operator * (const Point &p1,const Point &p2)
    {
        return p1.x*p2.y-p1.y*p2.x;
    }
    friend Point operator * (const Point &p,ld rate)
    {
        return Point(p.x*rate,p.y*rate);
    }
    friend ld Distance(const Point &p1,const Point &p2)
    {
        return sqrt( (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) ) ;
    }
    friend Point Rotate(const Point &p)
    {
        return Point(-p.y,p.x);
    }
}points[M];
struct Line{
    Point p,v;
    Line() {}
    Line(const Point &_,const Point &__):
        p(_),v(__) {}
    friend Point Get_Intersection(const Line &l1,const Line &l2)
    {
        Point u=l1.p-l2.p;
        ld temp=(l2.v*u)/(l1.v*l2.v);
        return l1.p+l1.v*temp;
    }
};
struct Circle{
    Point o;
    ld r;
    Circle() {}
    Circle(const Point &_,ld __):
        o(_),r(__) {}
    bool In_Circle(const Point &p)
    {
        return Distance(p,o) < r + EPS ;
    }
};
int n,m;
Circle Min_Circle_Cover(int l,int r)
{
    static Point points[M];
    int i,j,k;
    Circle ans(Point(0,0),0);
    memcpy(points+l,::points+l,sizeof(Point)*(r-l+1));
    random_shuffle(points+l,points+r+1);
    for(i=l;i<=r;i++)
        if(!ans.In_Circle(points[i]))
        {
            ans=Circle(points[i],0);
            for(j=l;j<i;j++)
                if(!ans.In_Circle(points[j]))
                {
                    ans=Circle((points[i]+points[j])*0.5,Distance(points[i],points[j])*0.5);
                    for(k=l;k<j;k++)
                        if(!ans.In_Circle(points[k]))
                        {
                            Line l1=Line((points[i]+points[j])*0.5,Rotate(points[i]-points[j]));
                            Line l2=Line((points[i]+points[k])*0.5,Rotate(points[i]-points[k]));
                            Point p=Get_Intersection(l1,l2);
                            ans=Circle(p,Distance(p,points[i]));
                        }
                }
        }
    return ans;
}
int Extend(int pos,ld limit)
{
    int i;
    for(i=1;;i=min(i<<1,n-pos+1))
    {
        if(Min_Circle_Cover(pos,pos+i-1).r>limit+EPS)
            break;
        if(i==n-pos+1) return n;
    }
    int l=pos+(i>>1)-1,r=pos+i-1;
    while(l+1<r)
    {
        int mid=l+r>>1;
        if(Min_Circle_Cover(pos,mid).r<limit+EPS)
            l=mid;
        else
            r=mid;
    }
    return l;
}
bool Judge(ld limit)
{
    int i,last,cnt=0;
    for(i=1;i<=n;i=last+1)
    {
        if(++cnt==m+1)
            return false;
        last=Extend(i,limit);
    }
    return true;
}
ld Bisection()
{
    ld l=0,r=Min_Circle_Cover(1,n).r;
    while(r-l>EPS)
    {
        ld mid=(l+r)/2;
        if( Judge(mid) )
            r=mid;
        else
            l=mid;
    }
    return r;
}
void Output(double limit)
{
    static Point stack[M];
    int i,last,top=0;
    for(i=1;i<=n;i=last+1)
    {
        last=Extend(i,limit);
        stack[++top]=Min_Circle_Cover(i,last).o;
    }
    cout<<top<<endl;
    for(i=1;i<=top;i++)
        printf("%.15lf %.15lf\n",(double)stack[i].x,(double)stack[i].y);
}
int main()
{
    int i;
    cin>>n>>m;
    for(i=1;i<=n;i++)
        cin>>points[i];
    ld ans=Bisection();
    cout<<fixed<<setprecision(15)<<ans<<endl;
    Output(ans+EPS);
    return 0;
}


你可能感兴趣的:(bzoj,二分答案,BZOJ2280,随机增量法)