矩阵求逆在3D程序中很常见,主要应用于求Billboard矩阵。按照定义的计算方法乘法运算,严重影响了性能。在需要大量Billboard矩阵运算时,矩阵求逆的优化能极大提高性能。这里要介绍的矩阵求逆算法称为全选主元高斯-约旦法。
高斯-约旦法(全选主元)求逆的步骤如下:
首先,对于 k 从 0 到 n - 1 作如下几步:
最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复的原则如下:在全选主元过程中,先交换的行(列)后进行恢复;原来的行(列)交换用列(行)交换来恢复。
float Inverse(CLAYMATRIX& mOut, const CLAYMATRIX& rhs) { CLAYMATRIX m(rhs); DWORD is[4]; DWORD js[4]; float fDet = 1.0f; int f = 1; for (int k = 0; k < 4; k ++) { // 第一步,全选主元 float fMax = 0.0f; for (DWORD i = k; i < 4; i ++) { for (DWORD j = k; j < 4; j ++) { const float f = Abs(m(i, j)); if (f > fMax) { fMax = f; is[k] = i; js[k] = j; } } } if (Abs(fMax) < 0.0001f) return 0; if (is[k] != k) { f = -f; swap(m(k, 0), m(is[k], 0)); swap(m(k, 1), m(is[k], 1)); swap(m(k, 2), m(is[k], 2)); swap(m(k, 3), m(is[k], 3)); } if (js[k] != k) { f = -f; swap(m(0, k), m(0, js[k])); swap(m(1, k), m(1, js[k])); swap(m(2, k), m(2, js[k])); swap(m(3, k), m(3, js[k])); } // 计算行列值 fDet *= m(k, k); // 计算逆矩阵 // 第二步 m(k, k) = 1.0f / m(k, k); // 第三步 for (DWORD j = 0; j < 4; j ++) { if (j != k) m(k, j) *= m(k, k); } // 第四步 for (DWORD i = 0; i < 4; i ++) { if (i != k) { for (j = 0; j < 4; j ++) { if (j != k) m(i, j) = m(i, j) - m(i, k) * m(k, j); } } } // 第五步 for (i = 0; i < 4; i ++) { if (i != k) m(i, k) *= -m(k, k); } } for (k = 3; k >= 0; k --) { if (js[k] != k) { swap(m(k, 0), m(js[k], 0)); swap(m(k, 1), m(js[k], 1)); swap(m(k, 2), m(js[k], 2)); swap(m(k, 3), m(js[k], 3)); } if (is[k] != k) { swap(m(0, k), m(0, is[k])); swap(m(1, k), m(1, is[k])); swap(m(2, k), m(2, is[k])); swap(m(3, k), m(3, is[k])); } } mOut = m; return fDet * f; }
原算法 | 原算法(经过高度优化) | 新算法 | |
---|---|---|---|
加法次数 | 103 | 61 | 39 |
乘法次数 | 170 | 116 | 69 |
需要额外空间 | 16 * sizeof(float) | 34 * sizeof(float) | 25 * sizeof(float) |
结果不言而喻吧。