UVA 12295 Optimal Symmetric Paths(spfa+记忆化)

题意:
求从左上角到右下角的最短路径数,且要求沿斜线对称
思路:
既然要求对称,所以我们将对称的权值叠加,那么就是求到对角线的最短路径了,通过dp解决方案数

// whn6325689
// Mr.Phoebe
// http://blog.csdn.net/u013007900
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
#include <functional>
#include <numeric>
#pragma comment(linker, "/STACK:1024000000,1024000000")

using namespace std;

#define eps 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LLINF 1LL<<62
#define speed std::ios::sync_with_stdio(false);

typedef long long ll;
typedef long double ld;
typedef pair<ll, ll> pll;
typedef complex<ld> point;
typedef pair<int, int> pii;
typedef pair<pii, int> piii;
typedef vector<int> vi;

#define CLR(x,y) memset(x,y,sizeof(x))
#define CPY(x,y) memcpy(x,y,sizeof(x))
#define clr(a,x,size) memset(a,x,sizeof(a[0])*(size))
#define cpy(a,x,size) memcpy(a,x,sizeof(a[0])*(size))

#define mp(x,y) make_pair(x,y)
#define pb(x) push_back(x)
#define lowbit(x) (x&(-x))

#define MID(x,y) (x+((y-x)>>1))
#define ls (idx<<1)
#define rs (idx<<1|1)
#define lson ls,l,mid
#define rson rs,mid+1,r
#define root 1,1,n

template<class T>
inline bool read(T &n)
{
    T x = 0, tmp = 1;
    char c = getchar();
    while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();
    if(c == EOF) return false;
    if(c == '-') c = getchar(), tmp = -1;
    while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar();
    n = x*tmp;
    return true;
}
template <class T>
inline void write(T n)
{
    if(n < 0)
    {
        putchar('-');
        n = -n;
    }
    int len = 0,data[20];
    while(n)
    {
        data[len++] = n%10;
        n /= 10;
    }
    if(!len) data[len++] = 0;
    while(len--) putchar(data[len]+48);
}
//-----------------------------------

const int MOD=1000000009;

int dx[] = {-1, 1, 0, 0}, dy[] = {0, 0, -1, 1};
ll dp[10010];
int d[10010],vis[10010],minn;
int N,a[111][111];
int q[10010];

int init()
{
    scanf("%d",&N);
    if(!N)
        return 0;
    for(int i=0; i<N; i++)
        for(int j=0; j<N; j++)
            scanf("%d",&a[i][j]);
    for(int i=0; i<N; i++)
        for(int j=0; j<N-i-1; j ++)
            a[i][j]+=a[N-1-j][N-1-i];
    return 1;
}
void spfa()
{
    int i,j,k,z,next,x,y,xx,yy,front,rear;
    for(i=0; i<10010; i++)
        d[i]=1000000000;
    d[1]=a[0][0];
    CLR(vis,0);vis[1]=1;
    front=rear=0;
    q[rear++]=1;
    while(front != rear)
    {
        z = q[front++];
        if(front > N*N)
            front=0;
        vis[z]=0;
        x=(z-1)/N;
        y=(z-1)%N;
        if(x+y == N-1)
            continue;
        for(i=0; i<4; i++)
        {
            xx=x+dx[i];
            yy=y+dy[i];
            if(xx>=0 && xx<N && yy>=0 && yy<N)
            {
                next=xx*N+yy+1;
                if(d[z]+a[xx][yy] < d[next])
                {
                    d[next]=d[z]+a[xx][yy];
                    if(!vis[next])
                    {
                        q[rear ++] = next;
                        if(rear > N*N)
                            rear=0;
                        vis[next]=1;
                    }
                }
            }
        }
    }
}
ll DP(int cur)
{
    int i,x,y,xx,yy,next;
    if(dp[cur]!=-1)
        return dp[cur];
    x=(cur-1)/N;
    y=(cur-1)%N;
    if(x+y == N-1)
    {
        if(d[cur] == minn)
            return dp[cur]=1;
        else
            return dp[cur]=0;
    }
    dp[cur]=0;
    for(int i=0; i<4; i++)
    {
        xx=x+dx[i];
        yy=y+dy[i];
        if(xx>=0 && xx<N && yy>=0 && yy<N)
        {
            next=xx*N+yy+1;
            if(d[cur]+a[xx][yy]==d[next])
                dp[cur]=(dp[cur]+DP(next))%MOD;
        }
    }
    return dp[cur];
}

int main()
{
    while(init())
    {
        spfa();
        minn=1000000000;
        for(int i=0; i<N; i++)
            if(d[i*N+N-i]<minn)
                minn=d[i*N+N-i];
        CLR(dp,-1);
        printf("%lld\n",DP(1));
    }
    return 0;
}

你可能感兴趣的:(UVA 12295 Optimal Symmetric Paths(spfa+记忆化))