今天我们来看ext2的扩展属性的主要文件xattr.c,内部有扩展属性的最重要的代码实现,但是文件也真的很长,我们来开始吧。
/* 作者版权信息
* linux/fs/ext2/xattr.c
*
* Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
* 被Harrison Xing修改过
* Fix by Harrison Xing <harrison@mountainviewdata.com>.
* Extended attributes for symlinks and special files added per
* suggestion of Luka Renko <luka.renko@hermes.si>.
* xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
* Red Hat Inc.
*
*/
#include <linux/buffer_head.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mbcache.h>
#include <linux/quotaops.h>
#include <linux/rwsem.h>
#include "ext2.h"
#include "xattr.h"
#include "acl.h"
/*宏定义,参数是buffer_head就诶勾踢指针,得到ext2_xattr_header类型的指针,指向buffer的头部*/
#define HDR(bh) ((struct ext2_xattr_header *)((bh)->b_data))
/*将指针转化为ext2_xattr_entry类型的*/
#define ENTRY(ptr) ((struct ext2_xattr_entry *)(ptr))
/*获得buffer的第一个项指针*/
#define FIRST_ENTRY(bh) ENTRY(HDR(bh)+1)
/*判断当前的项是不是最后一个*/
#define IS_LAST_ENTRY(entry) (*(__u32 *)(entry) == 0)
/*调试信息*/
#ifdef EXT2_XATTR_DEBUG
# define ea_idebug(inode, f...) do { \
printk(KERN_DEBUG "inode %s:%ld: ", \
inode->i_sb->s_id, inode->i_ino); \
printk(f); \
printk("\n"); \
} while (0)
# define ea_bdebug(bh, f...) do { \
char b[BDEVNAME_SIZE]; \
printk(KERN_DEBUG "block %s:%lu: ", \
bdevname(bh->b_bdev, b), \
(unsigned long) bh->b_blocknr); \
printk(f); \
printk("\n"); \
} while (0)
#else
# define ea_idebug(f...)
# define ea_bdebug(f...)
#endif
/*一些用到的函数声明*/
static int ext2_xattr_set2(struct inode *, struct buffer_head *,
struct ext2_xattr_header *);
static int ext2_xattr_cache_insert(struct buffer_head *);
static struct buffer_head *ext2_xattr_cache_find(struct inode *,
struct ext2_xattr_header *);
static void ext2_xattr_rehash(struct ext2_xattr_header *,
struct ext2_xattr_entry *);
/*系统存储的属性缓存*/
static struct mb_cache *ext2_xattr_cache;
/*属性的名称和处理函数的映射*/
static struct xattr_handler *ext2_xattr_handler_map[] = {
[EXT2_XATTR_INDEX_USER] = &ext2_xattr_user_handler,
#ifdef CONFIG_EXT2_FS_POSIX_ACL
[EXT2_XATTR_INDEX_POSIX_ACL_ACCESS] = &ext2_xattr_acl_access_handler,
[EXT2_XATTR_INDEX_POSIX_ACL_DEFAULT] = &ext2_xattr_acl_default_handler,
#endif
[EXT2_XATTR_INDEX_TRUSTED] = &ext2_xattr_trusted_handler,
#ifdef CONFIG_EXT2_FS_SECURITY
[EXT2_XATTR_INDEX_SECURITY] = &ext2_xattr_security_handler,
#endif
};
/*扩展属性的集合*/
struct xattr_handler *ext2_xattr_handlers[] = {
&ext2_xattr_user_handler,
&ext2_xattr_trusted_handler,
#ifdef CONFIG_EXT2_FS_POSIX_ACL
&ext2_xattr_acl_access_handler,
&ext2_xattr_acl_default_handler,
#endif
#ifdef CONFIG_EXT2_FS_SECURITY
&ext2_xattr_security_handler,
#endif
NULL
};
/*由扩展属性在数组里的下表,获得对应的处理函数结构体,参数name_index就是下表*/
static inline struct xattr_handler *
ext2_xattr_handler(int name_index)
{
struct xattr_handler *handler = NULL;
/*如果参数合法,返回对应的结构体*/
if (name_index > 0 && name_index < ARRAY_SIZE(ext2_xattr_handler_map))
/*上边刚说过的结构体*/
handler = ext2_xattr_handler_map[name_index];
return handler;
}
/*ext2_xattr_get()函数,复制一个扩展属性结构体到一个给定的buffer里,或者是计算需要的buffer大小,参数buffer如果是NULL的话,就计算需要的buffer大小,当失败的时候返回负的错误编号,成功时候返回消耗的字节数目*/
int
ext2_xattr_get(struct inode *inode, int name_index, const char *name,
void *buffer, size_t buffer_size)
{
struct buffer_head *bh = NULL;
struct ext2_xattr_entry *entry;
size_t name_len, size;
char *end;
int error;
/*调试信息,不管了*/
ea_idebug(inode, "name=%d.%s, buffer=%p, buffer_size=%ld",
name_index, name, buffer, (long)buffer_size);
/*如果要求的属性名称为NULL,说明传入参数有问题*/
if (name == NULL)
return -EINVAL;
/*读i_file_acl之前必须上锁*/
down_read(&EXT2_I(inode)->xattr_sem);
error = -ENODATA;
/*i_file_acl指向属性的文件块号,如果为空,直接返回*/
if (!EXT2_I(inode)->i_file_acl)
goto cleanup;
ea_idebug(inode, "reading block %d", EXT2_I(inode)->i_file_acl);
/*读取这个块进入内存*/
bh = sb_bread(inode->i_sb, EXT2_I(inode)->i_file_acl);
error = -EIO;
if (!bh)
goto cleanup;
ea_bdebug(bh, "b_count=%d, refcount=%d",
atomic_read(&(bh->b_count)), le32_to_cpu(HDR(bh)->h_refcount));
/*end指向buffer的末尾*/
end = bh->b_data + bh->b_size;
/*检查读取的缓冲区,看看这个块是不是坏块*/
if (HDR(bh)->h_magic != cpu_to_le32(EXT2_XATTR_MAGIC) ||
HDR(bh)->h_blocks != cpu_to_le32(1)) {
/*如果是坏块,报错并返回IO错误*/
bad_block: ext2_error(inode->i_sb, "ext2_xattr_get",
"inode %ld: bad block %d", inode->i_ino,
EXT2_I(inode)->i_file_acl);
error = -EIO;
goto cleanup;
}
/* 根据属性的名字寻找这个属性 */
/*先获得属性名字长度*/
name_len = strlen(name);
error = -ERANGE;
/*最大名字长度是255*/
if (name_len > 255)
goto cleanup;
/*获得属性的第一项*/
entry = FIRST_ENTRY(bh);
/*遍历属性的每一项*/
while (!IS_LAST_ENTRY(entry)) {
struct ext2_xattr_entry *next =
EXT2_XATTR_NEXT(entry);
/*检验当前项是不是合法*/
if ((char *)next >= end)
goto bad_block;
/*匹配,是不是我们想要的*/
if (name_index == entry->e_name_index &&
name_len == entry->e_name_len &&
memcmp(name, entry->e_name, name_len) == 0)
goto found;
entry = next;
}
/* 检查余下的项,看看有没有坏的 */
while (!IS_LAST_ENTRY(entry)) {
struct ext2_xattr_entry *next =
EXT2_XATTR_NEXT(entry);
if ((char *)next >= end)
goto bad_block;
entry = next;
}
/*创建一个新的扩展属性项,并且插入它*/
if (ext2_xattr_cache_insert(bh))
ea_idebug(inode, "cache insert failed");
error = -ENODATA;
goto cleanup;
found:
/* 检查保存value的块号,否则说明这个块是坏的 */
if (entry->e_value_block != 0)
goto bad_block;
size = le32_to_cpu(entry->e_value_size);
/*检查块的大小是否合法*/
if (size > inode->i_sb->s_blocksize ||
le16_to_cpu(entry->e_value_offs) + size > inode->i_sb->s_blocksize)
goto bad_block;
/*创建一个新的扩展属性项,并且插入到缓冲区*/
if (ext2_xattr_cache_insert(bh))
ea_idebug(inode, "cache insert failed");
if (buffer) {
error = -ERANGE;
if (size > buffer_size)
goto cleanup;
/* 返回属性 */
memcpy(buffer, bh->b_data + le16_to_cpu(entry->e_value_offs),
size);
}
error = size;
cleanup:
/*释放资源的引用*/
brelse(bh);
up_read(&EXT2_I(inode)->xattr_sem);
return error;
}
/*ext2_xattr_list()函数,复制一系列的属性到buffer里,当buffer是NULL的时候就只计算需要的字节数,成功返回需要的字节数,失败返回错误码 */
static int
ext2_xattr_list(struct inode *inode, char *buffer, size_t buffer_size)
{
struct buffer_head *bh = NULL;
struct ext2_xattr_entry *entry;
char *end;
size_t rest = buffer_size;
int error;
ea_idebug(inode, "buffer=%p, buffer_size=%ld",
buffer, (long)buffer_size);
/*在读取i_file_acl之前必须上xattr_sem锁*/
down_read(&EXT2_I(inode)->xattr_sem);
error = 0;
/*检查i_file_acl是不是为空*/
if (!EXT2_I(inode)->i_file_acl)
goto cleanup;
ea_idebug(inode, "reading block %d", EXT2_I(inode)->i_file_acl);
/*从硬盘上读取这个属性所在的块*/
bh = sb_bread(inode->i_sb, EXT2_I(inode)->i_file_acl);
error = -EIO;
if (!bh)
goto cleanup;
ea_bdebug(bh, "b_count=%d, refcount=%d",
atomic_read(&(bh->b_count)), le32_to_cpu(HDR(bh)->h_refcount));
/*end指向缓冲区的末尾*/
end = bh->b_data + bh->b_size;
/*检验缓冲区是不是合法*/
if (HDR(bh)->h_magic != cpu_to_le32(EXT2_XATTR_MAGIC) ||
HDR(bh)->h_blocks != cpu_to_le32(1)) {
/*坏块,打印信息,返回IO错误*/
bad_block: ext2_error(inode->i_sb, "ext2_xattr_list",
"inode %ld: bad block %d", inode->i_ino,
EXT2_I(inode)->i_file_acl);
error = -EIO;
goto cleanup;
}
/* 检查得到的buffer里的数据结构是不是对的 */
/*第一个项*/
entry = FIRST_ENTRY(bh);
/*遍历每一个项*/
while (!IS_LAST_ENTRY(entry)) {
struct ext2_xattr_entry *next = EXT2_XATTR_NEXT(entry);
if ((char *)next >= end)
goto bad_block;
entry = next;
}
/*创建一个新的项并插入*/
if (ext2_xattr_cache_insert(bh))
ea_idebug(inode, "cache insert failed");
/* 列出所有的属性名称 */
for (entry = FIRST_ENTRY(bh); !IS_LAST_ENTRY(entry);
entry = EXT2_XATTR_NEXT(entry)) {
/*得到属性处理结构体*/
struct xattr_handler *handler =
ext2_xattr_handler(entry->e_name_index);
if (handler) {
/*调用这个结构体的函数list来列出所有的属性*/
size_t size = handler->list(inode, buffer, rest,
entry->e_name,
entry->e_name_len);
/*检查函数是否成功*/
if (buffer) {
if (size > rest) {
error = -ERANGE;
goto cleanup;
}
buffer += size;
}
rest -= size;
}
}
/*返回所占用的全部空间大小*/
error = buffer_size - rest; /* total size */
cleanup:
/*释放占用的全部空间*/
brelse(bh);
up_read(&EXT2_I(inode)->xattr_sem);
return error;
}
/* 这个函数是从inode调用的listxattr()函数 */
ssize_t
ext2_listxattr(struct dentry *dentry, char *buffer, size_t size)
{
/*直接调用前边的函数*/
return ext2_xattr_list(dentry->d_inode, buffer, size);
}
/* 如果EXT2_FEATURE_COMPAT_EXT_ATTR位没有设置,就设置了 */
static void ext2_xattr_update_super_block(struct super_block *sb)
{
if (EXT2_HAS_COMPAT_FEATURE(sb, EXT2_FEATURE_COMPAT_EXT_ATTR))
return;
EXT2_SET_COMPAT_FEATURE(sb, EXT2_FEATURE_COMPAT_EXT_ATTR);
sb->s_dirt = 1;
mark_buffer_dirty(EXT2_SB(sb)->s_sbh);
}
/*ext2_xattr_set()函数可以创建,替换,删除一个inode的扩展属性buffer是NULL就删除,不为NUll就是替换或者是创建一个属性,flags参数的值XATTR_REPLACE和XATTR_CREATE标记处扩展属性必须存在和必须不能存在,失败的时候返回负的错误号 */
int
ext2_xattr_set(struct inode *inode, int name_index, const char *name,
const void *value, size_t value_len, int flags)
{
struct super_block *sb = inode->i_sb;
struct buffer_head *bh = NULL;
struct ext2_xattr_header *header = NULL;
struct ext2_xattr_entry *here, *last;
size_t name_len, free, min_offs = sb->s_blocksize;
int not_found = 1, error;
char *end;
ea_idebug(inode, "name=%d.%s, value=%p, value_len=%ld",
name_index, name, value, (long)value_len);
/*参数检查*/
if (value == NULL)
value_len = 0;
if (name == NULL)
return -EINVAL;
/*名字长度检查*/
name_len = strlen(name);
if (name_len > 255 || value_len > sb->s_blocksize)
return -ERANGE;
/*在对文件的i_file_acl字段读写之前,必须上锁*/
down_write(&EXT2_I(inode)->xattr_sem);
/*如果i_file_acl字段不为0*/
if (EXT2_I(inode)->i_file_acl) {
/* inode已经有一个扩展属性块了,读取这个块的内容 */
bh = sb_bread(sb, EXT2_I(inode)->i_file_acl);
error = -EIO;
/*检查是否读取出错*/
if (!bh)
goto cleanup;
ea_bdebug(bh, "b_count=%d, refcount=%d",
atomic_read(&(bh->b_count)),
le32_to_cpu(HDR(bh)->h_refcount));
/*header指向头部*/
header = HDR(bh);
/*end指向尾部*/
end = bh->b_data + bh->b_size;
/*检查头部的数据,看这个缓冲区是不是对的*/
if (header->h_magic != cpu_to_le32(EXT2_XATTR_MAGIC) ||
header->h_blocks != cpu_to_le32(1)) {
bad_block: ext2_error(sb, "ext2_xattr_set",
"inode %ld: bad block %d", inode->i_ino,
EXT2_I(inode)->i_file_acl);
error = -EIO;
goto cleanup;
}
/* 寻找我们想要的属性 */
/* 先把here指向第一个项 */
here = FIRST_ENTRY(bh);
/*遍历所有的项*/
while (!IS_LAST_ENTRY(here)) {
/*next指向下一个*/
struct ext2_xattr_entry *next = EXT2_XATTR_NEXT(here);
/*检查这个块是不是坏块,好的应该是正好不会超出缓冲区的*/
if ((char *)next >= end)
goto bad_block;
/*得到属性值在文件里的偏移量*/
if (!here->e_value_block && here->e_value_size) {
size_t offs = le16_to_cpu(here->e_value_offs);
/*min_offs指向最小的偏移量*/
if (offs < min_offs)
min_offs = offs;
}
/*判定有没有找到我们想要的项,首先要name_index一致,另外名称长度和名字也要一致*/
not_found = name_index - here->e_name_index;
if (!not_found)
not_found = name_len - here->e_name_len;
if (!not_found)
not_found = memcmp(name, here->e_name,name_len);
if (not_found <= 0)
break;
/*指向下一个项*/
here = next;
}
last = here;
/* 计算还没有遍历的,是不是有不合法的数据,还要计算min_offs */
while (!IS_LAST_ENTRY(last)) {
struct ext2_xattr_entry *next = EXT2_XATTR_NEXT(last);
if ((char *)next >= end)
goto bad_block;
if (!last->e_value_block && last->e_value_size) {
size_t offs = le16_to_cpu(last->e_value_offs);
if (offs < min_offs)
min_offs = offs;
}
last = next;
}
/* 看看是不是有多余的空间了. */
free = min_offs - ((char*)last - (char*)header) - sizeof(__u32);
} else {
/* 这个块是坏的,我们需要一个新的块 */
free = sb->s_blocksize -
sizeof(struct ext2_xattr_header) - sizeof(__u32);
here = last = NULL;
}
if (not_found) {
/* 请求删除的项没找到,返回错误 */
error = -ENODATA;
if (flags & XATTR_REPLACE)
goto cleanup;
error = 0;
if (value == NULL)
goto cleanup;
} else {
/* 创建一个已经存在的项吗 */
error = -EEXIST;
if (flags & XATTR_CREATE)
goto cleanup;
if (!here->e_value_block && here->e_value_size) {
size_t size = le32_to_cpu(here->e_value_size);
if (le16_to_cpu(here->e_value_offs) + size >
sb->s_blocksize || size > sb->s_blocksize)
goto bad_block;
free += EXT2_XATTR_SIZE(size);
}
free += EXT2_XATTR_LEN(name_len);
}
error = -ENOSPC;
/*空间不够创建*/
if (free < EXT2_XATTR_LEN(name_len) + EXT2_XATTR_SIZE(value_len))
goto cleanup;
/* 设置新属性. */
if (header) {
struct mb_cache_entry *ce;
/*从ext2_xattr_cache获得一个缓冲区*/
ce = mb_cache_entry_get(ext2_xattr_cache, bh->b_bdev,
bh->b_blocknr);
/*访问前上锁*/
lock_buffer(bh);
if (header->h_refcount == cpu_to_le32(1)) {
ea_bdebug(bh, "modifying in-place");
if (ce)
mb_cache_entry_free(ce);
} else {
int offset;
if (ce)
mb_cache_entry_release(ce);
unlock_buffer(bh);
ea_bdebug(bh, "cloning");
header = kmalloc(bh->b_size, GFP_KERNEL);
error = -ENOMEM;
if (header == NULL)
goto cleanup;
/*把原来缓冲区的内容放到新分配的header里*/
memcpy(header, HDR(bh), bh->b_size);
header->h_refcount = cpu_to_le32(1);
/*offset是偏移,here指向项,last指向最后一个entry*/
offset = (char *)here - bh->b_data;
here = ENTRY((char *)header + offset);
offset = (char *)last - bh->b_data;
last = ENTRY((char *)header + offset);
}
} else {
/* 创建缓冲区,建立新的block结构体 */
header = kzalloc(sb->s_blocksize, GFP_KERNEL);
error = -ENOMEM;
if (header == NULL)
goto cleanup;
end = (char *)header + sb->s_blocksize;
header->h_magic = cpu_to_le32(EXT2_XATTR_MAGIC);
header->h_blocks = header->h_refcount = cpu_to_le32(1);
last = here = ENTRY(header+1);
}
/* 修改属性. */
if (not_found) {
/* 插入新的属性名称 */
/* 得到对应名称的项的字节大小size,rest是余下的大小 */
size_t size = EXT2_XATTR_LEN(name_len);
size_t rest = (char *)last - (char *)here;
/*为新的属性腾出位置*/
memmove((char *)here + size, here, rest);
/*新的地方先初始化为0*/
memset(here, 0, size);
/*赋值*/
here->e_name_index = name_index;
here->e_name_len = name_len;
memcpy(here->e_name, name, name_len);
} else {
/* 如果属性的值就存在本块内 */
if (!here->e_value_block && here->e_value_size) {
/*指向第一个值*/
char *first_val = (char *)header + min_offs;
size_t offs = le16_to_cpu(here->e_value_offs);
char *val = (char *)header + offs;
size_t size = EXT2_XATTR_SIZE(
le32_to_cpu(here->e_value_size));
/*如果新旧属性值长度一样*/
if (size == EXT2_XATTR_SIZE(value_len)) {
/* 直接替换*/
here->e_value_size = cpu_to_le32(value_len);
memset(val + size - EXT2_XATTR_PAD, 0,
EXT2_XATTR_PAD); /* Clear pad bytes. */
memcpy(val, value, value_len);
goto skip_replace;
}
/* 新旧属性长度不一样,移除旧的 */
memmove(first_val + size, first_val, val - first_val);
memset(first_val, 0, size);
here->e_value_offs = 0;
min_offs += size;
/* 还要调整所有的偏移 */
last = ENTRY(header+1);
while (!IS_LAST_ENTRY(last)) {
size_t o = le16_to_cpu(last->e_value_offs);
if (!last->e_value_block && o < offs)
last->e_value_offs =
cpu_to_le16(o + size);
last = EXT2_XATTR_NEXT(last);
}
}
if (value == NULL) {
/* 移除原有的属性名 */
size_t size = EXT2_XATTR_LEN(name_len);
last = ENTRY((char *)last - size);
memmove(here, (char*)here + size,
(char*)last - (char*)here);
memset(last, 0, size);
}
}
if (value != NULL) {
/* 插入新的值 */
here->e_value_size = cpu_to_le32(value_len);
/*值不是空值的话*/
if (value_len) {
/*修改*/
size_t size = EXT2_XATTR_SIZE(value_len);
char *val = (char *)header + min_offs - size;
here->e_value_offs =
cpu_to_le16((char *)val - (char *)header);
memset(val + size - EXT2_XATTR_PAD, 0,
EXT2_XATTR_PAD); /* Clear the pad bytes. */
memcpy(val, value, value_len);
}
}
skip_replace:
if (IS_LAST_ENTRY(ENTRY(header+1))) {
/* 这个块不是空的. */
if (bh && header == HDR(bh))
unlock_buffer(bh); /* we were modifying in-place. */
error = ext2_xattr_set2(inode, bh, NULL);
} else {
ext2_xattr_rehash(header, here);
if (bh && header == HDR(bh))
unlock_buffer(bh); /* we were modifying in-place. */
error = ext2_xattr_set2(inode, bh, header);
}
cleanup:
/*释放对buffer_head的引用*/
brelse(bh);
if (!(bh && header == HDR(bh)))
kfree(header);
/*释放锁*/
up_write(&EXT2_I(inode)->xattr_sem);
return error;
}
/*ext2_xattr_set()函数的下一半,更新文件系统*/
static int
ext2_xattr_set2(struct inode *inode, struct buffer_head *old_bh,
struct ext2_xattr_header *header)
{
struct super_block *sb = inode->i_sb;
struct buffer_head *new_bh = NULL;
int error;
if (header) {
/*在缓存里寻找header的项*/
new_bh = ext2_xattr_cache_find(inode, header);
/*如果找到了*/
if (new_bh) {
/*同一个*/
if (new_bh == old_bh) {
ea_bdebug(new_bh, "keeping this block");
} else {
/* The old block is released after updating
the inode. */
ea_bdebug(new_bh, "reusing block");
error = -EDQUOT;
if (DQUOT_ALLOC_BLOCK(inode, 1)) {
unlock_buffer(new_bh);
goto cleanup;
}
HDR(new_bh)->h_refcount = cpu_to_le32(1 +
le32_to_cpu(HDR(new_bh)->h_refcount));
ea_bdebug(new_bh, "refcount now=%d",
le32_to_cpu(HDR(new_bh)->h_refcount));
}
unlock_buffer(new_bh);
} else if (old_bh && header == HDR(old_bh)) {
/* Keep this block. No need to lock the block as we
don't need to change the reference count. */
new_bh = old_bh;
get_bh(new_bh);
ext2_xattr_cache_insert(new_bh);
} else {
/* We need to allocate a new block */
int goal = le32_to_cpu(EXT2_SB(sb)->s_es->
s_first_data_block) +
EXT2_I(inode)->i_block_group *
EXT2_BLOCKS_PER_GROUP(sb);
int block = ext2_new_block(inode, goal,
NULL, NULL, &error);
if (error)
goto cleanup;
ea_idebug(inode, "creating block %d", block);
new_bh = sb_getblk(sb, block);
if (!new_bh) {
ext2_free_blocks(inode, block, 1);
error = -EIO;
goto cleanup;
}
lock_buffer(new_bh);
memcpy(new_bh->b_data, header, new_bh->b_size);
set_buffer_uptodate(new_bh);
unlock_buffer(new_bh);
ext2_xattr_cache_insert(new_bh);
ext2_xattr_update_super_block(sb);
}
/*new_bh脏了*/
mark_buffer_dirty(new_bh);
if (IS_SYNC(inode)) {
sync_dirty_buffer(new_bh);
error = -EIO;
if (buffer_req(new_bh) && !buffer_uptodate(new_bh))
goto cleanup;
}
}
/*更新inode的i_file_acl字段,修改时间等*/
EXT2_I(inode)->i_file_acl = new_bh ? new_bh->b_blocknr : 0;
inode->i_ctime = CURRENT_TIME_SEC;
/*是否需要同步*/
if (IS_SYNC(inode)) {
error = ext2_sync_inode (inode);
if (error && error != -ENOSPC) {
if (new_bh && new_bh != old_bh)
DQUOT_FREE_BLOCK(inode, 1);
goto cleanup;
}
} else
mark_inode_dirty(inode);
error = 0;
/*如果存在原有的块,并且我们已经不用了就释放*/
if (old_bh && old_bh != new_bh) {
struct mb_cache_entry *ce;
/*找到他在缓存里的位置*/
ce = mb_cache_entry_get(ext2_xattr_cache, old_bh->b_bdev,
old_bh->b_blocknr);
lock_buffer(old_bh);
if (HDR(old_bh)->h_refcount == cpu_to_le32(1)) {
/* 如果引用仅仅有一个,释放 */
if (ce)
mb_cache_entry_free(ce);
ea_bdebug(old_bh, "freeing");
ext2_free_blocks(inode, old_bh->b_blocknr, 1);
/* We let our caller release old_bh, so we
* need to duplicate the buffer before. */
get_bh(old_bh);
bforget(old_bh);
} else {
/* 减少引用计数 */
HDR(old_bh)->h_refcount = cpu_to_le32(
le32_to_cpu(HDR(old_bh)->h_refcount) - 1);
if (ce)
mb_cache_entry_release(ce);
DQUOT_FREE_BLOCK(inode, 1);
mark_buffer_dirty(old_bh);
ea_bdebug(old_bh, "refcount now=%d",
le32_to_cpu(HDR(old_bh)->h_refcount));
}
unlock_buffer(old_bh);
}
cleanup:
brelse(new_bh);
return error;
}
/* ext2_xattr_delete_inode()函数释放与inode相关的属性资源 */
void
ext2_xattr_delete_inode(struct inode *inode)
{
struct buffer_head *bh = NULL;
struct mb_cache_entry *ce;
/*读i_file_acl之前都要上这个锁*/
down_write(&EXT2_I(inode)->xattr_sem);
if (!EXT2_I(inode)->i_file_acl)
goto cleanup;
/*读这个属性所在的块*/
bh = sb_bread(inode->i_sb, EXT2_I(inode)->i_file_acl);
/*如果读取出现错误*/
if (!bh) {
ext2_error(inode->i_sb, "ext2_xattr_delete_inode",
"inode %ld: block %d read error", inode->i_ino,
EXT2_I(inode)->i_file_acl);
goto cleanup;
}
ea_bdebug(bh, "b_count=%d", atomic_read(&(bh->b_count)));
/*检验读取出来的buffer_head是不是有问题,是不是ext2文件系统的属性*/
if (HDR(bh)->h_magic != cpu_to_le32(EXT2_XATTR_MAGIC) ||
HDR(bh)->h_blocks != cpu_to_le32(1)) {
ext2_error(inode->i_sb, "ext2_xattr_delete_inode",
"inode %ld: bad block %d", inode->i_ino,
EXT2_I(inode)->i_file_acl);
goto cleanup;
}
/*在ext2_xattr_cache缓存里寻找并删除*/
ce = mb_cache_entry_get(ext2_xattr_cache, bh->b_bdev, bh->b_blocknr);
lock_buffer(bh);
/*引用计数为1就删除*/
if (HDR(bh)->h_refcount == cpu_to_le32(1)) {
if (ce)
mb_cache_entry_free(ce);
ext2_free_blocks(inode, EXT2_I(inode)->i_file_acl, 1);
get_bh(bh);
bforget(bh);
unlock_buffer(bh);
} else {
/*递减引用计数*/
HDR(bh)->h_refcount = cpu_to_le32(
le32_to_cpu(HDR(bh)->h_refcount) - 1);
if (ce)
mb_cache_entry_release(ce);
ea_bdebug(bh, "refcount now=%d",
le32_to_cpu(HDR(bh)->h_refcount));
unlock_buffer(bh);
mark_buffer_dirty(bh);
if (IS_SYNC(inode))
sync_dirty_buffer(bh);
DQUOT_FREE_BLOCK(inode, 1);
}
EXT2_I(inode)->i_file_acl = 0;
cleanup:
brelse(bh);
up_write(&EXT2_I(inode)->xattr_sem);
}
/* ext2_xattr_put_super()当文件系统被卸载的时候调用 */
void
ext2_xattr_put_super(struct super_block *sb)
{
mb_cache_shrink(sb->s_bdev);
}
/* ext2_xattr_cache_insert()函数在属性缓存里创建一个新的扩展属性项,不管它是不是已经在ext2_xattr_cache缓存里,成返回0 */
static int
ext2_xattr_cache_insert(struct buffer_head *bh)
{
/*插入缓存是需要hash来便于查找*/
__u32 hash = le32_to_cpu(HDR(bh)->h_hash);
struct mb_cache_entry *ce;
int error;
/*在ext2_xattr_cache分配缓存*/
ce = mb_cache_entry_alloc(ext2_xattr_cache);
if (!ce)
return -ENOMEM;
/*把这个ce插入*/
error = mb_cache_entry_insert(ce, bh->b_bdev, bh->b_blocknr, &hash);
/*插入失败,释放缓存*/
if (error) {
mb_cache_entry_free(ce);
if (error == -EBUSY) {
ea_bdebug(bh, "already in cache (%d cache entries)",
atomic_read(&ext2_xattr_cache->c_entry_count));
error = 0;
}
} else {
ea_bdebug(bh, "inserting [%x] (%d cache entries)", (int)hash,
atomic_read(&ext2_xattr_cache->c_entry_count));
mb_cache_entry_release(ce);
}
return error;
}
/* ext2_xattr_cmp()函数比较两个扩展属性块,当这两个一样时返回0,不一样返回1,有错误返回负数 */
static int
ext2_xattr_cmp(struct ext2_xattr_header *header1,
struct ext2_xattr_header *header2)
{
struct ext2_xattr_entry *entry1, *entry2;
/*得到这两个缓冲区的head*/
entry1 = ENTRY(header1+1);
entry2 = ENTRY(header2+1);
/*遍历开始*/
while (!IS_LAST_ENTRY(entry1)) {
/*第一个没有到结尾第二个到结尾了,说明不一样*/
if (IS_LAST_ENTRY(entry2))
return 1;
/*比较*/
if (entry1->e_hash != entry2->e_hash ||
entry1->e_name_index != entry2->e_name_index ||
entry1->e_name_len != entry2->e_name_len ||
entry1->e_value_size != entry2->e_value_size ||
memcmp(entry1->e_name, entry2->e_name, entry1->e_name_len))
return 1;
if (entry1->e_value_block != 0 || entry2->e_value_block != 0)
return -EIO;
/*比较value*/
if (memcmp((char *)header1 + le16_to_cpu(entry1->e_value_offs),
(char *)header2 + le16_to_cpu(entry2->e_value_offs),
le32_to_cpu(entry1->e_value_size)))
return 1;
/*指向下一个*/
entry1 = EXT2_XATTR_NEXT(entry1);
entry2 = EXT2_XATTR_NEXT(entry2);
}
/*不一样*/
if (!IS_LAST_ENTRY(entry2))
return 1;
return 0;
}
/*ext2_xattr_cache_find()函数,寻找一个标记的扩展属性块。成功的话返回找到的块的buffer_head,失败返回NULL*/
static struct buffer_head *
ext2_xattr_cache_find(struct inode *inode, struct ext2_xattr_header *header)
{
__u32 hash = le32_to_cpu(header->h_hash);
struct mb_cache_entry *ce;
/*没有共享在hash里*/
if (!header->h_hash)
return NULL;
ea_idebug(inode, "looking for cached blocks [%x]", (int)hash);
again:
/*在ext2_xattr_cache缓存里一个一个的找*/
ce = mb_cache_entry_find_first(ext2_xattr_cache, 0,
inode->i_sb->s_bdev, hash);
/*寻找的循环*/
while (ce) {
struct buffer_head *bh;
/*检验得到的是不是合法的*/
if (IS_ERR(ce)) {
if (PTR_ERR(ce) == -EAGAIN)
goto again;
break;
}
/*读取这一块进入内存*/
bh = sb_bread(inode->i_sb, ce->e_block);
/*如果IO读取出错*/
if (!bh) {
ext2_error(inode->i_sb, "ext2_xattr_cache_find",
"inode %ld: block %ld read error",
inode->i_ino, (unsigned long) ce->e_block);
} else {
/*开始读取buffer_head*/
lock_buffer(bh);
/*一个缓冲区被引用太多次*/
if (le32_to_cpu(HDR(bh)->h_refcount) >
EXT2_XATTR_REFCOUNT_MAX) {
ea_idebug(inode, "block %ld refcount %d>%d",
(unsigned long) ce->e_block,
le32_to_cpu(HDR(bh)->h_refcount),
EXT2_XATTR_REFCOUNT_MAX);
/*匹配*/
} else if (!ext2_xattr_cmp(header, HDR(bh))) {
ea_bdebug(bh, "b_count=%d",
atomic_read(&(bh->b_count)));
mb_cache_entry_release(ce);
return bh;
}
unlock_buffer(bh);
brelse(bh);
}
/*继续找*/
ce = mb_cache_entry_find_next(ce, 0, inode->i_sb->s_bdev, hash);
}
return NULL;
}
#define NAME_HASH_SHIFT 5
#define VALUE_HASH_SHIFT 16
/*ext2_xattr_hash_entry()计算这个扩展属性的hash值 */
static inline void ext2_xattr_hash_entry(struct ext2_xattr_header *header,
struct ext2_xattr_entry *entry)
{
__u32 hash = 0;
char *name = entry->e_name;
int n;
for (n=0; n < entry->e_name_len; n++) {
hash = (hash << NAME_HASH_SHIFT) ^
(hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^
*name++;
}
if (entry->e_value_block == 0 && entry->e_value_size != 0) {
__le32 *value = (__le32 *)((char *)header +
le16_to_cpu(entry->e_value_offs));
for (n = (le32_to_cpu(entry->e_value_size) +
EXT2_XATTR_ROUND) >> EXT2_XATTR_PAD_BITS; n; n--) {
hash = (hash << VALUE_HASH_SHIFT) ^
(hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^
le32_to_cpu(*value++);
}
}
entry->e_hash = cpu_to_le32(hash);
}
#undef NAME_HASH_SHIFT
#undef VALUE_HASH_SHIFT
#define BLOCK_HASH_SHIFT 16
/*
* ext2_xattr_rehash()重新计算hash值
*/
static void ext2_xattr_rehash(struct ext2_xattr_header *header,
struct ext2_xattr_entry *entry)
{
struct ext2_xattr_entry *here;
__u32 hash = 0;
ext2_xattr_hash_entry(header, entry);
here = ENTRY(header+1);
while (!IS_LAST_ENTRY(here)) {
if (!here->e_hash) {
/* Block is not shared if an entry's hash value == 0 */
hash = 0;
break;
}
hash = (hash << BLOCK_HASH_SHIFT) ^
(hash >> (8*sizeof(hash) - BLOCK_HASH_SHIFT)) ^
le32_to_cpu(here->e_hash);
here = EXT2_XATTR_NEXT(here);
}
header->h_hash = cpu_to_le32(hash);
}
#undef BLOCK_HASH_SHIFT
/*ext2属性初始化*/
int __init
init_ext2_xattr(void)
{
/*创建缓冲区*/
ext2_xattr_cache = mb_cache_create("ext2_xattr", NULL,
sizeof(struct mb_cache_entry) +
sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]), 1, 6);
if (!ext2_xattr_cache)
return -ENOMEM;
return 0;
}
/*ext2属性退出销毁*/
void
exit_ext2_xattr(void)
{
mb_cache_destroy(ext2_xattr_cache);
}