过拟合(overfit)与欠拟合(underfit)

过拟合:1)简单理解就是训练样本的得到的输出和期望输出基本一致,但是测试样本输出和测试样本的期望输出相差却很大 。2)为了得到一致假设而使假设变得过度复杂称为过拟合。想像某种学习算法产生了一个过拟合的分类器,这个分类器能够百分之百的正确分类样本数据(即再拿样本中的文档来给它,它绝对不会分错),但也就为了能够对样本完全正确的分类,使得它的构造如此精细复杂,规则如此严格,以至于任何与样本数据稍有不同的文档它全都认为不属于这个类别!

--------------------------------------------------------------------------------------------------------------------------------

 

如果数据本身呈现二次型,故用一条二次曲线拟合会更好。但普通的PLS程序只提供线性方程供拟合之用。这就产生拟合不足即“欠拟合”现象,从而在预报时要造成偏差。如果我们用人工神经网络拟合,则因为三层人工神经网络拟合能力极强,有能力拟合任何函数。如果拟合彻底,就会连实验数据点分布不均匀,实验数据的误差等等“噪声”都按最小二乘判据拟合进数学模型。这当然也会造成预报的偏差。这就是“过拟合”的一个实例了。

你可能感兴趣的:(过拟合(overfit)与欠拟合(underfit))