Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3]
and s = 7
,
the subarray [4,3]
has the minimal length under the problem constraint.
解题思路:
注意这里的subarray是只顺序不可变,故不可以用先排序后选择的方法。
1、暴力滑动窗口法。依次验证窗口大小为1,2,3...的窗口,看看是否有和大于给定值的子数组。时间复杂度为O(n^2),空间复杂度为1
class Solution { public: int minSubArrayLen(int s, vector<int>& nums) { int size = nums.size(); int len = 1; while(len<=size){ int sum = 0; for(int j=0; j<len; j++){ sum += nums[j]; } if(sum>=s){ return len; } int start = 0; int end = start + len - 1; while(end + 1<size){ sum -= nums[start]; sum += nums[end+1]; if(sum>=s){ return len; }else{ start++; end++; } } len++; } return 0; } };2、伸缩窗口法。用两个指针start,end,若start和end-1之间的和小于s,end增加,若大于等于s,start增加,然后记录大于等于s时最小的长度。这种办法时间复杂度为O(n),空间复杂度为1。
class Solution { public: int minSubArrayLen(int s, vector<int>& nums) { int size = nums.size(); if(size==0){ return 0; } int minLen = size + 1; int sum = 0; int start=0, end=0; while(end<size){ while(sum<s && end<size){ sum += nums[end]; end++; } while(sum>=s){ minLen = min(minLen, end - start); if(minLen == 1){ return minLen; } sum -= nums[start]; start++; } } return minLen==size + 1?0:minLen; } };