Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S
1, S
2, S
3, S
4 ... S
x, ... S
n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S
x ≤ 32767). We define a function sum(i, j) = S
i + ... + S
j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i
1, j
1) + sum(i
2, j
2) + sum(i
3, j
3) + ... + sum(i
m, j
m) maximal (i
x ≤ i
y ≤ j
x or i
x ≤ j
y ≤ j
x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i
x, j
x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3 ... S
n.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
1003的升级版==就像之前看1505city game 和 1506Largest Rectangle in a Histogram 没看出来二者有什么关系一样 ==
这次做完了1003maxsum 依旧没做出来1024更何况1003的写法就不对→_→
状态转移方程 dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) 前者是与之前的成为一组 后者是独立成组
dp[i][j]表示前j个数组成i组 而dp[i-1][k]是在j=j-1时的mmmax (怪不得他的序号就是j-1==)即mmax[j-1]
而mmax[]只有在下一次i=i+1 j=j 这个对应位置会被用到 恰恰说明了dp[i-1][k] 的本质是为了取上一次循环中的最大值
#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int a[1000005],dp[1000005],mmax[1000005],n,m,mmmax;
int main()
{
while(~scanf("%d%d",&m,&n))
{
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
memset(dp,0,sizeof(dp));
memset(mmax,0,sizeof(mmax));
for(int i=1;i<=m;i++)
{
mmmax=-0x3f3f3f3f;
for(int j=i;j<=n;j++)
{
dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]);
mmax[j-1]=mmmax;
mmmax=max(dp[j],mmmax);
}
}
printf("%d\n",mmmax);
}
return 0;
}