【#262 div 2 D. Little Victor and Set】
【原题】
Little Victor adores the sets theory. Let us remind you that a set is a group of numbers where all numbers are pairwise distinct. Today Victor wants to find a set of integers S that has the following properties:
Help Victor find the described set.
The first line contains three space-separated integers l, r, k (1 ≤ l ≤ r ≤ 1012; 1 ≤ k ≤ min(106, r - l + 1)).
Print the minimum possible value of f(S). Then print the cardinality of set |S|. Then print the elements of the set in any order.
If there are multiple optimal sets, you can print any of them.
8 15 3
1 2 10 11
8 30 7
0 5 14 9 28 11 16
Operation represents the operation of bitwise exclusive OR. In other words, it is the XOR operation.
【题意】给定范围L和R,在这之间选P个不同的自然数,其中1<=P<=k,求选出的数最小异或和及某个方案。
【分析】很显然的结论,K^(K+1)=1,其中K是偶数。当K>3时,我们可以选连续的4个自然数使异或和为0。(当然注意要特判R-L+1的大小)。当K=1时,就是L。当K=2时,显然只能构造异或为1的情况。
所有的推论都指向一个问题:当K=3的一般情况怎么做?
【题解】对于那个情况,我一直觉得能贪心构造,但是怎么也想不出简单易行且效率高的算法。
其实很简单。我们设L<=X<Y<Z<=R,然后来贪心构造他们。
在二进制中,异或和为0的情况是1,1,0或0,0,0。显然Z的第一位是1,然后X和Y是0。
因为是贪心,我们要尽量使Y靠近Z(因为如果Z符合范围,Y显然越大越好)。
那么第二位我们就让Y靠近Z。我们把Z那位设成0,X和Y都设成1,即如下形式:
110000000
101111111
011111111
当然脑补可能会萎...为了少特判,我在R-L+1小的时候直接暴力寻找。
【代码】
#include<cstdio> #include<algorithm> #include<iostream> #define E endl #define INF 999999999999999ll #define RE return 0 using namespace std; typedef long long LL; LL len,sum,ans,C,wri[15],temp[15],i,S,L,R,k,x,z; inline void DFS(LL now,LL C,LL sum) { if (now==R+1) { if (sum>=ans||!C) return;len=C;ans=sum; for (int i=1;i<=C;i++) wri[i]=temp[i]; return; } if (now>R) return; DFS(now+1,C,sum);if (C+1>k) return; temp[C+1]=now;DFS(now+1,C+1,sum^now); } int main() { cin>>L>>R>>k; if (L==R) {cout<<L<<E<<1<<E<<R;RE;} if (R-L<=8) { ans=INF;DFS(L,0,0);cout<<ans<<E<<len<<E; for (i=1;i<=len;i++) cout<<wri[i]<<' ';RE; } if (k>3) { S=(L&1)?L+1:L; cout<<0<<E<<4<<E<<S<<' '<<S+1<<' '<<S+2<<' '<<S+3;RE; } z=3;x=1; while (z<=R&&k==3) { if (x>=L) {cout<<0<<E<<3<<E<<x<<' '<<z-1<<' '<<z;RE;} x=x<<1|1;z<<=1; } if (k==2||k==3) { S=(L&1)?L+1:L; cout<<1<<E<<2<<E<<S<<' '<<S+1;RE; } if (k==1||k==3) {cout<<L<<E<<1<<E<<L;RE;} return 0; }