写作原由:今日接手用stm32f100xx芯片开发的项目,以前用的是stm8s 和stm32f103xx芯片;因为在别人的项目代码的基础上做2次开发,但是发现那个代码main函数中没有对系统时钟的设置的相关函数,一直纳闷,但也没有深究,直至昨日 调试时出现串口收发数据出错,源代码在原项目的板子上串口发送、接收数据正常,同样程序在项目板子上收发的数据不正确, 两块板子芯片一样,串口收发管脚一样,最后发现原来板子外部晶振是8MHZ ,新板子外部晶振是12MHZ; 而在STM32固件库中,默认的外部晶振是8MHZ,由于时钟源不正确,导致波特率不正确,当然收发的数据也不正确了.....我勒个去!都怪自己平时看问题“不求甚解”。
(波特率与时钟源关系公式:IntegerDivider = ((PCLKx) / (16 * (USART_InitStruct->USART_BaudRate)))
为了深入思考,我提出了一些疑问,通过解答这些问题更深入的了解时钟;
问题一:对系统时钟的设置的相关函数,在main函数中找不到,那在哪里?还是说根本没有对系统时钟进行配置?
问题二:既然用了外部晶振做系统时钟,那为什么没看到启动外部晶振的操作?
问题三:串口的时钟源是什么?串口时钟源跟系统时钟的关系?
问题四:程序中串口时钟源是怎样实现对波特率的关系的?
现附上我找到上面3个问题答案做的一张框架图:希望博友参考此图理解我后面的内容:
在进入主题之前我们先了解一些必要的基础知识----stm32系列芯片的种类和型号:
(下图中的startup_stm32f10_ld.s应改为:startup_stm32f10x_md_vl.s)
问题一:对系统时钟的设置的相关函数,在main函数中找不到,那在哪里?还是说根本没有对系统时钟进行配置?
解答:高人指点,我看了一下启动文件startup_stm32f10x_md_vl.s,其中有一段汇编:
; Reset handler routine
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
IMPORT SystemInit
LDR R0, =SystemInit BLX R0
LDR R0, =__main
BX R0
ENDP
其中,
IMPORT __main IMPORT SystemInit //IMPORT 声明了需要引用C语言中的main函数、systeminit函数,
LDR R0, = systeminint //把systeminit 函数地址放到r0 寄存器;
BLX R0 //跳到到R0 寄存器中的地址执行;
所以,在跳到main函数执行前,已经在SystemInit 函数中把系统时钟给设置好了;
问题二:既然用了外部晶振做系统时钟,那为什么没看到启动外部晶振的操作?
我们在解答这个问题前,先到SystemInit函数里面做更深入的了解:
void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #ifndef STM32F10X_CL RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F10X_CL */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #ifdef STM32F10X_CL /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F10X_CL */ /* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers */ /* Configure the Flash Latency cycles and enable prefetch buffer */ SetSysClock(); #ifdef STM32F10X_HD #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F10X_HD */ }
我们进入setsysclock()函数,看其中作了哪些操作:
/** * @brief Configures the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers. * @param None * @retval None */ static void SetSysClock(void) { #ifdef SYSCLK_FREQ_HSE SetSysClockToHSE(); #elif defined SYSCLK_FREQ_24MHz SetSysClockTo24(); #elif defined SYSCLK_FREQ_36MHz SetSysClockTo36(); #elif defined SYSCLK_FREQ_48MHz SetSysClockTo48(); #elif defined SYSCLK_FREQ_56MHz SetSysClockTo56(); #elif defined SYSCLK_FREQ_72MHz SetSysClockTo72(); #endif
我项目中用的是此款芯片 stm32f100CB,内部晶振是24MHZ, 所以应进入执行SetSysClockTo24() 函数:
/** * @brief Sets System clock frequency to 24MHz and configure HCLK, PCLK2 * and PCLK1 prescalers. * @note This function should be used only after reset. * @param None * @retval None */ static void SetSysClockTo24(void) { __IO uint32_t StartUpCounter = 0, HSEStatus = 0; /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/ /* Enable HSE */ RCC->CR |= ((uint32_t)RCC_CR_HSEON); //开启外部晶振 /* Wait till HSE is ready and if Time out is reached exit */ do { HSEStatus = RCC->CR & RCC_CR_HSERDY; StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != HSEStartUp_TimeOut)); if ((RCC->CR & RCC_CR_HSERDY) != RESET)//等待外部晶振起振 { HSEStatus = (uint32_t)0x01; } else { HSEStatus = (uint32_t)0x00; } if (HSEStatus == (uint32_t)0x01) { #if !defined STM32F10X_LD_VL && !defined STM32F10X_MD_VL /* Enable Prefetch Buffer */ FLASH->ACR |= FLASH_ACR_PRFTBE; /* Flash 0 wait state */ FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY); FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_0; #endif /* HCLK = SYSCLK */ RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1; /* PCLK2 = HCLK */ RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1; /* PCLK1 = HCLK */ RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV1; #ifdef STM32F10X_CL /* Configure PLLs ------------------------------------------------------*/ /* PLL configuration: PLLCLK = PREDIV1 * 6 = 24 MHz */ RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL); RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLMULL6); /* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */ /* PREDIV1 configuration: PREDIV1CLK = PLL2 / 10 = 4 MHz */ RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL | RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC); RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 | RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV10); /* Enable PLL2 */ RCC->CR |= RCC_CR_PLL2ON; /* Wait till PLL2 is ready */ while((RCC->CR & RCC_CR_PLL2RDY) == 0) { } #elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) /* PLL configuration: = (HSE / 2) * 6 = 24 MHz */ RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL)); RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLXTPRE_PREDIV1_Div2 | RCC_CFGR_PLLMULL6); #else /* PLL configuration: = (HSE / 2) * 6 = 24 MHz */ RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL)); RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLXTPRE_HSE_Div2 | RCC_CFGR_PLLMULL6); #endif /* STM32F10X_CL */ /* Enable PLL */ RCC->CR |= RCC_CR_PLLON; /* Wait till PLL is ready */ while((RCC->CR & RCC_CR_PLLRDY) == 0) { } /* Select PLL as system clock source */ RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW)); RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; /* Wait till PLL is used as system clock source */ while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08) { } } else { /* If HSE fails to start-up, the application will have wrong clock configuration. User can add here some code to deal with this error */ } } #elif defined SYSCLK_FREQ_36MHz
解析:
void SetSysClockTo24函数中主要做了下面几件事:(不同颜色功能分别对应上面对应颜色代码部分)
1.启动外部晶振作为系统时钟源;
2.等待外部晶振起振;
3.(起振后)对系统时钟源进行分频:(默认外部是HSE--8MHZ晶振) PLL configuration: = (HSE / 2) * 6 = 24 MHz
4. 配置HCLK、PCLK1、PCLK2 与系统时钟源的关系;
问题三:串口的时钟源是什么?串口时钟源跟系统时钟的关系?
回答这个问题前,我们先来看stm32f100芯片手册数据图(第12页):
从图里面我们可看出串口1的时钟源是PCLK1;
上面问题2的代码中我们看到PCLK1是时钟源24MHZ的1分频,即还是24MHZ;
问题四:程序中串口时钟源是怎样实现对波特率的关系的?
由问题3我们知道串口时钟源是24mhz,依据公式:IntegerDivider = ((PCLKx) / (16 * (USART_InitStruct->USART_BaudRate)))
库中自动设置IntegerDivider 存入寄存器中;
附加: 转自http://blog.sina.com.cn/s/blog_542bad910101g1gu.html
(1)
在KEIL下可以在项目的选项C/C++/PREPROMCESSOR symbols的Define栏里定义,比如STM32F10X_CL