与本书其他地方一样,我会试着提供对类的一个概述,但假定你会利用联机文档搞定所有的细节,比如方法的详尽列表等。
7.1 数据的发起与接收
Java 1.0的几乎所有IO流类都有对应的Java 1.1类,用于提供内建的Unicode管理。似乎最容易的事情就是“全部使用新类,再也不要用旧的”,但实际情况并没有这么简单。有些时候,由于受到库设计的一些限制,我们不得不使用Java 1.0的IO流类。特别要指出的是,在旧流库的基础上新加了java.util.zip库,它们依赖旧的流组件。所以最明智的做法是“尝试性”地使用Reader和Writer类。若代码不能通过编译,便知道必须换回老式库。
7.2 修改数据流的行为
在Java 1.0中,数据流通过FilterInputStream和FilterOutputStream的“装饰器”(Decorator)子类适应特定的需求。Java 1.1的IO流沿用了这一思想,但没有继续采用所有装饰器都从相同“filter”(过滤器)基础类中衍生这一做法。若通过观察类的层次结构来理解它,这可能令人出现少许的困惑。
在下面这张表格中,对应关系比上一张表要粗糙一些。之所以会出现这个差别,是由类的组织造成的:尽管BufferedOutputStream是FilterOutputStream的一个子类,但是BufferedWriter并不是FilterWriter的子类(对后者来说,尽管它是一个抽象类,但没有自己的子类或者近似子类的东西,也没有一个“占位符”可用,所以不必费心地寻找)。然而,两个类的接口是非常相似的,而且不管在什么情况下,显然应该尽可能地使用新版本,而不应考虑旧版本(也就是说,除非在一些类中必须生成一个Stream,不可生成Reader或者Writer)。
过滤器:Java 1.0类 对应的Java 1.1类
FilterInputStream FilterReader
FilterOutputStream FilterWriter(没有子类的抽象类)
BufferedInputStream BufferedReader(也有readLine())
BufferedOutputStream BufferedWriter
DataInputStream 使用DataInputStream(除非要使用readLine(),那时需要使用一个BufferedReader)
PrintStream PrintWriter
LineNumberInputStream LineNumberReader
StreamTokenizer StreamTokenizer(用构建器取代Reader)
PushBackInputStream PushBackReader
有一条规律是显然的:若想使用readLine(),就不要再用一个DataInputStream来实现(否则会在编译期得到一条出错消息),而应使用一个BufferedReader。但除这种情况以外,DataInputStream仍是Java 1.1 IO库的“首选”成员。
为了将向PrintWriter的过渡变得更加自然,它提供了能采用任何OutputStream对象的构建器。PrintWriter提供的格式化支持没有PrintStream那么多;但接口几乎是相同的。
7.3 未改变的类
显然,Java库的设计人员觉得以前的一些类毫无问题,所以没有对它们作任何修改,可象以前那样继续使用它们:
没有对应Java 1.1类的Java 1.0类
DataOutputStream
File
RandomAccessFile
SequenceInputStream
特别未加改动的是DataOutputStream,所以为了用一种可转移的格式保存和获取数据,必须沿用InputStream和OutputStream层次结构。
7.4 一个例子
大家一般看见的是转换过程非常直观,代码看起来也颇相似。但这些都不是重要的区别。最重要的是,由于随机访问文件已经改变,所以第6节未再重复。
第1节收缩了一点儿,因为假如要做的全部事情就是读取行输入,那么只需要将一个FileReader封装到BufferedReader之内即可。第1b节展示了封装System.in,以便读取控制台输入的新方法。这里的代码量增多了一些,因为System.in是一个DataInputStream,而且BufferedReader需要一个Reader参数,所以要用InputStreamReader来进行转换。
在2节,可以看到如果有一个字串,而且想从中读取数据,只需用一个StringReader替换StringBufferInputStream,剩下的代码是完全相同的。
第3节揭示了新IO流库设计中的一个错误。如果有一个字串,而且想从中读取数据,那么不能再以任何形式使用StringBufferInputStream。若编译一个涉及StringBufferInputStream的代码,会得到一条“反对”消息,告诉我们不要用它。此时最好换用一个StringReader。但是,假如要象第3节这样进行格式化的内存输入,就必须使用DataInputStream——没有什么“DataReader”可以代替它——而DataInputStream很不幸地要求用到一个InputStream参数。所以我们没有选择的余地,只好使用编译器不赞成的StringBufferInputStream类。编译器同样会发出反对信息,但我们对此束手无策(注释②)。
StringReader替换StringBufferInputStream,剩下的代码是完全相同的。
②:到你现在正式使用的时候,这个错误可能已经修正。
第4节明显是从老式数据流到新数据流的一个直接转换,没有需要特别指出的。在第5节中,我们被强迫使用所有的老式数据流,因为DataOutputStream和DataInputStream要求用到它们,而且没有可供替换的东西。然而,编译期间不会产生任何“反对”信息。若不赞成一种数据流,通常是由于它的构建器产生了一条反对消息,禁止我们使用整个类。但在DataInputStream的情况下,只有readLine()是不赞成使用的,因为我们最好为readLine()使用一个BufferedReader(但为其他所有格式化输入都使用一个DataInputStream)。
若比较第5节和IOStreamDemo.java中的那一小节,会注意到在这个版本中,数据是在文本之前写入的。那是由于Java 1.1本身存在一个错误。
看起来,我们在对一个writeBytes()的调用之后写入的任何东西都不是能够恢复。为检测是否改正,请运行上述程序。若没有得到一个违例,而且值都能正确打印出来,就表明已经改正。
7.5 重导向标准IO
Java 1.1在System类中添加了特殊的方法,允许我们重新定向标准输入、输出以及错误IO流。此时要用到下述简单的静态方法调用:
setIn(InputStream)
setOut(PrintStream)
setErr(PrintStream)
如果突然要在屏幕上生成大量输出,而且滚动的速度快于人们的阅读速度,输出的重定向就显得特别有用。在一个命令行程序中,如果想重复测试一个特定的用户输入序列,输入的重定向也显得特别有价值。
这个程序的作用是将标准输入同一个文件连接起来,并将标准输出和错误重定向至另一个文件。这是不可避免会遇到“反对”消息的另一个例子。用-deprecation标志编译时得到的消息如下:
Note:The constructor java.io.PrintStream(java.io.OutputStream) has been deprecated.
注意:不推荐使用构建器java.io.PrintStream(java.io.OutputStream)。
然而,无论System.setOut()还是System.setErr()都要求用一个PrintStream作为参数使用,所以必须调用PrintStream构建器。所以大家可能会觉得奇怪,既然Java 1.1通过反对构建器而反对了整个PrintStream,为什么库的设计人员在添加这个反对的同时,依然为System添加了新方法,且指明要求用PrintStream,而不是用PrintWriter呢?毕竟,后者是一个崭新和首选的替换措施呀。
压缩
Java 1.1也添加一个类,用以支持对压缩格式的数据流的读写。它们封装到现成的IO类中,以提供压缩功能。
此时Java 1.1的一个问题显得非常突出:它们不是从新的Reader和Writer类衍生出来的,而是属于InputStream和OutputStream层次结构的一部分。所以有时不得不混合使用两种类型的数据流(注意可用InputStreamReader和OutputStreamWriter在不同的类型间方便地进行转换)。
Java 1.1压缩类 功能
CheckedInputStream GetCheckSum()为任何InputStream产生校验和(不仅是解压)
CheckedOutputStream GetCheckSum()为任何OutputStream产生校验和(不仅是解压)
DeflaterOutputStream 用于压缩类的基础类
ZipOutputStream 一个DeflaterOutputStream,将数据压缩成Zip文件格式
GZIPOutputStream 一个DeflaterOutputStream,将数据压缩成GZIP文件格式
InflaterInputStream 用于解压类的基础类
ZipInputStream 一个DeflaterInputStream,解压用Zip文件格式保存的数据
GZIPInputStream 一个DeflaterInputStream,解压用GZIP文件格式保存的数据
尽管存在许多种压缩算法,但是Zip和GZIP可能最常用的。所以能够很方便地用多种现成的工具来读写这些格式的压缩数据。
用GZIP进行简单压缩
GZIP接口非常简单,所以如果只有单个数据流需要压缩(而不是一系列不同的数据),那么它就可能是最适当选择。
压缩类的用法非常直观——只需将输出流封装到一个GZIPOutputStream或者ZipOutputStream内,并将输入流封装到GZIPInputStream或者ZipInputStream内即可。剩余的全部操作就是标准的IO读写。然而,这是一个很典型的例子,我们不得不混合使用新旧IO流:数据的输入使用Reader类,而GZIPOutputStream的构建器只能接收一个OutputStream对象,不能接收Writer对象。
用Zip进行多文件保存
提供了Zip支持的Java 1.1库显得更加全面。利用它可以方便地保存多个文件。甚至有一个独立的类来简化对Zip文件的读操作。这个库采采用的是标准Zip格式,所以能与当前因特网上使用的大量压缩、解压工具很好地协作。下面这个例子采取了与前例相同的形式,但能根据我们需要控制任意数量的命令行参数。除此之外,它展示了如何用Checksum类来计算和校验文件的“校验和”(Checksum)。可选用两种类型的Checksum:Adler32(速度要快一些)和CRC32(慢一些,但更准确)。
对于要加入压缩档的每一个文件,都必须调用putNextEntry(),并将其传递给一个ZipEntry对象。ZipEntry对象包含了一个功能全面的接口,利用它可以获取和设置Zip文件内那个特定的Entry(入口)上能够接受的所有数据:名字、压缩后和压缩前的长度、日期、CRC校验和、额外字段的数据、注释、压缩方法以及它是否一个目录入口等等。然而,虽然Zip格式提供了设置密码的方法,但Java的Zip库没有提供这方面的支持。而且尽管CheckedInputStream和CheckedOutputStream同时提供了对Adler32和CRC32校验和的支持,但是ZipEntry只支持CRC的接口。这虽然属于基层Zip格式的限制,但却限制了我们使用速度更快的Adler32。
为解压文件,ZipInputStream提供了一个getNextEntry()方法,能在有的前提下返回下一个ZipEntry。作为一个更简洁的方法,可以用ZipFile对象读取文件。该对象有一个entries()方法,可以为ZipEntry返回一个Enumeration(枚举)。
为读取校验和,必须多少拥有对关联的Checksum对象的访问权限。在这里保留了指向CheckedOutputStream和CheckedInputStream对象的一个句柄。但是,也可以只占有指向Checksum对象的一个句柄。
Zip流中一个令人困惑的方法是setComment()。正如前面展示的那样,我们可在写一个文件时设置注释内容,但却没有办法取出ZipInputStream内的注释。看起来,似乎只能通过ZipEntry逐个入口地提供对注释的完全支持。
当然,使用GZIP或Zip库时并不仅仅限于文件——可以压缩任何东西,包括要通过网络连接发送的数据。
Java归档(jar)实用程序
Zip格式亦在Java 1.1的JAR(Java ARchive)文件格式中得到了采用。这种文件格式的作用是将一系列文件合并到单个压缩文件里,就象Zip那样。然而,同Java中其他任何东西一样,JAR文件是跨平台的,所以不必关心涉及具体平台的问题。除了可以包括声音和图像文件以外,也可以在其中包括类文件。
涉及因特网应用时,JAR文件显得特别有用。在JAR文件之前,Web浏览器必须重复多次请求Web服务器,以便下载完构成一个“程序片”(Applet)的所有文件。除此以外,每个文件都是未经压缩的。但在将所有这些文件合并到一个JAR文件里以后,只需向远程服务器发出一次请求即可。同时,由于采用了压缩技术,所以可在更短的时间里获得全部数据。另外,JAR文件里的每个入口(条目)都可以加上数字化签。
一个JAR文件由一系列采用Zip压缩格式的文件构成,同时还有一张“详情单”,对所有这些文件进行了描。在联机用户文档中,可以找到与JAR详情单更多的资料(详情单的英语是“Manifest”)。
jar实用程序已与Sun的JDK配套提供,可以按选择自动压缩文件。请在命令行调用它:
jar [选项] 说明 [详情单] 输入文件
其中,“选项”用一系列字母表示(不必输入连字号或其他任何指示符)。
c 创建新的或空的压缩档
t 列出目录表
x 解压所有文件
x file 解压指定文件
f 指出“我准备向你提供文件名”。若省略此参数,jar会假定它的输入来自标准输入;或者在它创建文件时,输出会进入标准输出内
m 指出第一个参数将是用户自建的详情表文件的名字
v 产生详细输出,对jar做的工作进行巨细无遗的描述
O 只保存文件;不压缩文件(用于创建一个JAR文件,以便我们将其置入自己的类路径中)
M 不自动生成详情表文件
在准备进入JAR文件的文件中,若包括了一个子目录,那个子目录会自动添加,其中包括它自己的所有子目录,以此类推。路径信息也会得到保留。
下面是调用jar的一些典型方法:
jar cf myJarFile.jar *.class
用于创建一个名为myJarFile.jar的JAR文件,其中包含了当前目录中的所有类文件,同时还有自动产生的详情表文件。
jar cmf myJarFile.jar myManifestFile.mf *.class
与前例类似,但添加了一个名为myManifestFile.mf的用户自建详情表文件。
jar tf myJarFile.jar
生成myJarFile.jar内所有文件的一个目录表。
jar tvf myJarFile.jar
添加“verbose”(详尽)标志,提供与myJarFile.jar中的文件有关的、更详细的资料。
jar cvf myApp.jar audio classes image
假定audio,classes和image是子目录,这样便将所有子目录合并到文件myApp.jar中。其中也包括了“verbose”标志,可在jar程序工作时反馈更详尽的信息。
如果用O选项创建了一个JAR文件,那个文件就可置入自己的类路径(CLASSPATH)中:
CLASSPATH="lib1.jar;lib2.jar;"
Java能在lib1.jar和lib2.jar中搜索目标类文件。
jar工具的功能没有zip工具那么丰富。例如,不能够添加或更新一个现成JAR文件中的文件,只能从头开始新建一个JAR文件。此外,不能将文件移入一个JAR文件,并在移动后将它们删除。然而,在一种平台上创建的JAR文件可在其他任何平台上由jar工具毫无阻碍地读出(这个问题有时会困扰zip工具)。
对象序列化
Java 1.1增添了一种有趣的特性,名为“对象序列化”(Object Serialization)。它面向那些实现了Serializable接口的对象,可将它们转换成一系列字节,并可在以后完全恢复回原来的样子。这一过程亦可通过网络进行。这意味着序列化机制能自动补偿操作系统间的差异。换句话说,可以先在Windows机器上创建一个对象,对其序列化,然后通过网络发给一台Unix机器,然后在那里准确无误地重新“装配”。不必关心数据在不同机器上如何表示,也不必关心字节的顺序或者其他任何细节。
就其本身来说,对象的序列化是非常有趣的,因为利用它可以实现“有限持久化”。请记住“持久化”意味着对象的“生存时间”并不取决于程序是否正在执行——它存在或“生存”于程序的每一次调用之间。通过序列化一个对象,将其写入磁盘,以后在程序重新调用时重新恢复那个对象,就能圆满实现一种“持久”效果。之所以称其为“有限”,是因为不能用某种“persistent”(持久)关键字简单地地定义一个对象,并让系统自动照看其他所有细节问题。相反,必须在自己的程序中明确地序列化和组装对象。
语言里增加了对象序列化的概念后,可提供对两种主要特性的支持。Java 1.1的“远程方法调用”(RMI)使本来存在于其他机器的对象可以表现出好象就在本地机器上的行为。将消息发给远程对象时,需要通过对象序列化来传输参数和返回值。
对象的序列化也是Java Beans必需的,后者由Java 1.1引入。使用一个Bean时,它的状态信息通常在设计期间配置好。程序启动以后,这种状态信息必须保存下来,以便程序启动以后恢复;具体工作由对象序列化完成。
对象的序列化处理非常简单,只需对象实现了Serializable接口即可(该接口仅是一个标记,没有方法)。在Java 1.1中,许多标准库类都发生了改变,以便能够序列化——其中包括用于基本数据类型的全部封装器、所有集合类以及其他许多东西。甚至Class对象也可以序列化(第11章讲述了具体实现过程)。
为序列化一个对象,首先要创建某些OutputStream对象,然后将其封装到ObjectOutputStream对象内。此时,只需调用writeObject()即可完成对象的序列化,并将其发送给OutputStream。相反的过程是将一个InputStream封装到ObjectInputStream内,然后调用readObject()。和往常一样,我们最后获得的是指向一个上溯造型Object的句柄,所以必须下溯造型,以便能够直接设置。
对象序列化特别“聪明”的一个地方是它不仅保存了对象的“全景图”,而且能追踪对象内包含的所有句柄并保存那些对象;接着又能对每个对象内包含的句柄进行追踪;以此类推。我们有时将这种情况称为“对象网”,单个对象可与之建立连接。而且它还包含了对象的句柄数组以及成员对象。若必须自行操纵一套对象序列化机制,那么在代码里追踪所有这些链接时可能会显得非常麻烦。在另一方面,由于Java对象的序列化似乎找不出什么缺点,所以请尽量不要自己动手,让它用优化的算法自动维护整个对象网。下面这个例子对序列化机制进行了测试。它建立了许多链接对象的一个“Worm”(蠕虫),每个对象都与Worm中的
下一段链接,同时又与属于不同类(Data)的对象句柄数组链接:
Worm内的Data对象数组是用随机数字初始化的(这样便不用怀疑编译器保留了某种原始信息)。每个Worm段都用一个Char标记。这个Char是在重复生成链接的Worm列表时自动产生的。创建一个Worm时,需告诉构建器希望它有多长。为产生下一个句柄(next),它总是用减去1的长度来调用Worm构建器。最后一个next句柄则保持为null(空),表示已抵达Worm的尾部。
上面的所有操作都是为了加深事情的复杂程度,加大对象序列化的难度。然而,真正的序列化过程却是非常简单的。一旦从另外某个流里创建了ObjectOutputStream,writeObject()就会序列化对象。注意也可以为一个String调用writeObject()。亦可使用与DataOutputStream相同的方法写入所有基本数据类型(它们有相同的接口)。
有两个单独的try块看起来是类似的。第一个读写的是文件,而另一个读写的是一个ByteArray(字节数组)。可利用对任何DataInputStream或者DataOutputStream的序列化来读写特定的对象。
由此可见,装配回原状的对象确实包含了原来那个对象里包含的所有链接。
注意在对一个Serializable(可序列化)对象进行重新装配的过程中,不会调用任何构建器(甚至默认构建器)。整个对象都是通过从InputStream中取得数据恢复的。
作为Java 1.1特性的一种,我们注意到对象的序列化并不属于新的Reader和Writer层次结构的一部分,而是沿用老式的InputStream和OutputStream结构。所以在一些特殊的场合下,不得不混合使用两种类型的层次结构。
寻找类
为什么需要一个对象从它的序列化状态中恢复?举个例子来说,假定我们序列化一个对象,并通过网络将其作为文件传送给另一台机器。此时,位于另一台机器的程序可以只用文件目录来重新构造这个对象吗?
程序并不是捕获和控制违例,而是将违例简单、直接地传递到main()外部,这样便能在命令行报告它们。
程序编译并运行后,将结果产生的file.x复制到名为xfiles的子目录。
该程序能打开文件,并成功读取mystery对象中的内容。然而,一旦尝试查找与对象有关的任何资料——这要求Alien的Class对象——Java虚拟机(JVM)便找不到Alien.class(除非它正好在类路径内,而本例理应相反)。这样就会得到一个名叫ClassNotFoundException的违例(同样地,若非能够校验Alien存在的证据,否则它等于消失)。
恢复了一个序列化的对象后,如果想对其做更多的事情,必须保证JVM能在本地类路径或者因特网的其他什么地方找到相关的.class文件。
序列化的控制
正如大家看到的那样,默认的序列化机制并不难操纵。然而,假若有特殊要求又该怎么办呢?我们可能有特殊的安全问题,不希望对象的某一部分序列化;或者某一个子对象完全不必序列化,因为对象恢复以后,那一部分需要重新创建。
此时,通过实现Externalizable接口,用它代替Serializable接口,便可控制序列化的具体过程。这个Externalizable接口扩展了Serializable,并增添了两个方法:writeExternal()和readExternal()。在序列化和重新装配的过程中,会自动调用这两个方法,以便我们执行一些特殊操作。
未恢复Blip2对象的原因是那样做会导致一个违例。你找出了Blip1和Blip2之间的区别吗?Blip1的构建器是“公共的”(public),Blip2的构建器则不然,这样便会在恢复时造成违例。试试将Blip2的构建器属性变成“public”,然后删除//!注释标记,看看是否能得到正确的结果。
恢复b1后,会调用Blip1默认构建器。这与恢复一个Serializable(可序列化)对象不同。在后者的情况下,对象完全以它保存下来的二进制位为基础恢复,不存在构建器调用。而对一个Externalizable对象,所有普通的默认构建行为都会发生(包括在字段定义时的初始化),而且会调用readExternal()。必须注意这一事实——特别注意所有默认的构建行为都会进行——否则很难在自己的Externalizable对象中产生正确的行为。
其中,字段s和i只在第二个构建器中初始化,不关默认构建器的事。这意味着假如不在readExternal中初始化s和i,它们就会成为null(因为在对象创建的第一步中已将对象的存储空间清除为1)。若注释掉跟随于“You must do this”后面的两行代码,并运行程序,就会发现当对象恢复以后,s是null,而i是零。
若从一个Externalizable对象继承,通常需要调用writeExternal()和readExternal()的基础类版本,以便正确地保存和恢复基础类组件。
所以为了让一切正常运作起来,千万不可仅在writeExternal()方法执行期间写入对象的重要数据(没有默认的行为可用来为一个Externalizable对象写入所有成员对象)的,而是必须在readExternal()方法中也恢复那些数据。初次操作时可能会有些不习惯,因为Externalizable对象的默认构建行为使其看起来似乎正在进行某种存储与恢复操作。但实情并非如此。
1. transient(临时)关键字
控制序列化过程时,可能有一个特定的子对象不愿让Java的序列化机制自动保存与恢复。一般地,若那个子对象包含了不想序列化的敏感信息(如密码),就会面临这种情况。即使那种信息在对象中具有“private”(私有)属性,但一旦经序列化处理,人们就可以通过读取一个文件,或者拦截网络传输得到它。
为防止对象的敏感部分被序列化,一个办法是将自己的类实现为Externalizable,就象前面展示的那样。这样一来,没有任何东西可以自动序列化,只能在writeExternal()明确序列化那些需要的部分。
然而,若操作的是一个Serializable对象,所有序列化操作都会自动进行。为解决这个问题,可以用transient(临时)逐个字段地关闭序列化,它的意思是“不要麻烦你(指自动机制)保存或恢复它了——我会自己处理的”。例如,假设一个Login对象包含了与一个特定的登录会话有关的信息。校验登录的合法性时,一般都想将数据保存下来,但不包括密码。为做到这一点,最简单的办法是实现Serializable,并将password字段设为transient。
可以看到,其中的date和username字段保持原始状态(未设成transient),所以会自动序列化。然而,password被设为transient,所以不会自动保存到磁盘;另外,自动序列化机制也不会作恢复它的尝试。
一旦对象恢复成原来的样子,password字段就会变成null。注意必须用toString()检查password是否为null,因为若用过载的“+”运算符来装配一个String对象,而且那个运算符遇到一个null句柄,就会造成一个名为NullPointerException的违例(新版Java可能会提供避免这个问题的代码)。
我们也发现date字段被保存到磁盘,并从磁盘恢复,没有重新生成。
由于Externalizable对象默认时不保存它的任何字段,所以transient关键字只能伴随Serializable使用。
2. Externalizable的替代方法
若不是特别在意要实现Externalizable接口,还有另一种方法可供选用。我们可以实现Serializable接口,并添加(注意是“添加”,而非“覆盖”或者“实现”)名为writeObject()和readObject()的方法。一旦对象被序列化或者重新装配,就会分别调用那两个方法。也就是说,只要提供了这两个方法,就会优先使用它们,而不考虑默认的序列化机制。
从设计的角度出发,情况变得有些扑朔迷离。首先,大家可能认为这些方法不属于基础类或者Serializable接口的一部分,它们应该在自己的接口中得到定义。但请注意它们被定义成“private”,这意味着它们只能由这个类的其他成员调用。然而,我们实际并不从这个类的其他成员中调用它们,而是由ObjectOutputStream和ObjectInputStream的writeObject()及readObject()方法来调用我们对象的writeObject()和readObject()方法(注意我在这里用了很大的抑制力来避免使用相同的方法名——因为怕混淆)。大家可能奇怪ObjectOutputStream和ObjectInputStream如何有权访问我们的类的private方法——只能认为这是序列化机制玩的一个把戏。
在任何情况下,接口中的定义的任何东西都会自动具有public属性,所以假若writeObject()和readObject()必须为private,那么它们不能成为接口(interface)的一部分。但由于我们准确地加上了签名,所以最终的效果实际与实现一个接口是相同的。
看起来似乎我们调用ObjectOutputStream.writeObject()的时候,我们传递给它的Serializable对象似乎会被检查是否实现了自己的writeObject()。若答案是肯定的是,便会跳过常规的序列化过程,并调用writeObject()。readObject()也会遇到同样的情况。
还存在另一个问题。在我们的writeObject()内部,可以调用defaultWriteObject(),从而决定采取默认的writeObject()行动。类似地,在readObject()内部,可以调用defaultReadObject(。
在这个例子中,一个String保持原始状态,其他设为transient(临时),以便证明非临时字段会被defaultWriteObject()方法自动保存,而transient字段必须在程序中明确保存和恢复。字段是在构建器内部初始化的,而不是在定义的时候,这证明了它们不会在重新装配的时候被某些自动化机制初始化。
若准备通过默认机制写入对象的非transient部分,那么必须调用defaultWriteObject(),令其作为writeObject()中的第一个操作;并调用defaultReadObject(),令其作为readObject()的第一个操作。这些都是不常见的调用方法。举个例子来说,当我们为一个ObjectOutputStream调用defaultWriteObject()的时候,而且没有为其传递参数,就需要采取这种操作,使其知道对象的句柄以及如何写入所有非transient的部分。这种做法非常不便。
transient对象的存储与恢复采用了我们更熟悉的代码。现在考虑一下会发生一些什么事情。在main()中会创建一个SerialCtl对象,随后会序列化到一个ObjectOutputStream里(注意这种情况下使用的是一个缓冲区,而非文件——与ObjectOutputStream完全一致)。正式的序列化操作是在下面这行代码里发生的:
o.writeObject(sc);
其中,writeObject()方法必须核查sc,判断它是否有自己的writeObject()方法(不是检查它的接口——它根本就没有,也不是检查类的类型,而是利用反射方法实际搜索方法)。若答案是肯定的,就使用那个方法。类似的情况也会在readObject()上发生。或许这是解决问题唯一实际的方法,但确实显得有些古怪。
3. 版本问题
有时候可能想改变一个可序列化的类的版本(比如原始类的对象可能保存在数据库中)。尽管这种做法得到了支持,但一般只应在非常特殊的情况下才用它。此外,它要求操作者对背后的原理有一个比较深的认识,而我们在这里还不想达到这种深度。JDK 1.1的HTML文档对这一主题进行了非常全面的论述(可从Sun公司下载,但可能也成了Java开发包联机文档的一部分)。
利用“持久性”
一个比较诱人的想法是用序列化技术保存程序的一些状态信息,从而将程序方便地恢复到以前的状态。但在具体实现以前,有些问题是必须解决的。如果两个对象都有指向第三个对象的句柄,该如何对这两个对象序列化呢?如果从两个对象序列化后的状态恢复它们,第三个对象的句柄只会出现在一个对象身上吗?如果将这两个对象序列化成独立的文件,然后在代码的不同部分重新装配它们,又会得到什么结果呢?
针对一个字节数组应用对象的序列化,从而实现对任何Serializable(可序列化)对象的一个“全面复制”(全面复制意味着复制的是整个对象网,而不仅是基本对象和它的句柄)。
Animal对象包含了类型为House的字段。在main()中,会创建这些Animal的一个Vector,并对其序列化两次,分别送入两个不同的数据流内。这些数据重新装配并打印出来后,可看到结果。
当然,我们希望装配好的对象有与原来不同的地址。但注意在animals1和animals2中出现了相同的地址,其中包括共享的、对House对象的引用。在另一方面,当animals3恢复以后,系统没有办法知道另一个流内的对象是第一个流内对象的化身,所以会产生一个完全不同的对象网。
只要将所有东西都序列化到单独一个数据流里,就能恢复获得与以前写入时完全一样的对象网,不会不慎造成对象的重复。当然,在写第一个和最后一个对象的时间之间,可改变对象的状态,但那必须由我们明确采取操作——序列化时,对象会采用它们当时的任何状态(包括它们与其他对象的连接关系)写入。
若想保存系统状态,最安全的做法是当作一种“微观”操作序列化。如果序列化了某些东西,再去做其他一些工作,再来序列化更多的东西,以此类推,那么最终将无法安全地保存系统状态。相反,应将构成系统状态的所有对象都置入单个集合内,并在一次操作里完成那个集合的写入。这样一来,同样只需一次方法调用,即可成功恢复之。
下面这个例子是一套假想的计算机辅助设计(CAD)系统,对这一方法进行了很好的演示。此外,它还为我们引入了static字段的问题——如留意联机文档,就会发现Class是“Serializable”(可序列化)的,所以只需简单地序列化Class对象,就能实现static字段的保存。这无论如何都是一种明智的做法。
Shape(几何形状)类“实现了可序列化”(implements Serializable),所以从Shape继承的任何东西也都会自动“可序列化”。每个Shape都包含了数据,而且每个衍生的Shape类都包含了一个特殊的static字段,用于决定所有那些类型的Shape的颜色(如将一个static字段置入基础类,结果只会产生一个字段,因为static字段未在衍生类中复制)。可对基础类中的方法进行覆盖处理,以便为不同的类型设置颜色(static方法不会动态绑定,所以这些都是普通的方法)。每次调用randomFactory()方法时,它都会创建一个不同的Shape(Shape值采用随机值)。
Circle(圆)和Square(矩形)属于对Shape的直接扩展;唯一的差别是Circle在定义时会初始化颜色,而Square在构建器中初始化。Line(直线)的问题将留到以后讨论。
在main()中,一个Vector用于容纳Class对象,而另一个用于容纳形状。若不提供相应的命令行参数,就会创建shapeTypes Vector,并添加Class对象。然后创建shapes Vector,并添加Shape对象。接下来,所有static color值都会设成GREEN,而且所有东西都会序列化到文件CADState.out。
若提供了一个命令行参数(假设CADState.out),便会打开那个文件,并用它恢复程序的状态。无论在哪种情况下,结果产生的Shape的Vector都会打印出来。
从中可以看出,xPos,yPos以及dim的值都已成功保存和恢复出来。但在获取static信息时却出现了问题。所有“3”都已进入,但没有正常地出来。Circle有一个1值(定义为RED),而Square有一个0值(记住,它们是在构建器里初始化的)。看上去似乎static根本没有得到初始化!实情正是如此——尽管类Class是“可以序列化的”,但却不能按我们希望的工作。所以假如想序列化static值,必须亲自动手。
这正是Line中的serializeStaticState()和deserializeStaticState()两个static方法的用途。可以看到,这两个方法都是作为存储和恢复进程的一部分明确调用的(注意写入序列化文件和从中读回的顺序不能改变)。所以为了使CADState.java正确运行起来,必须采用下述三种方法之一:
(1) 为几何形状添加一个serializeStaticState()和deserializeStaticState()。
(2) 删除Vector shapeTypes以及与之有关的所有代码
(3) 在几何形状内添加对新序列化和撤消序列化静态方法的调用
要注意的另一个问题是安全,因为序列化处理也会将private数据保存下来。若有需要保密的字段,应将其标记成transient。但在这之后,必须设计一种安全的信息保存方法。这样一来,一旦需要恢复,就可以重设那些private变量。
总结
Java IO流库能满足我们的许多基本要求:可以通过控制台、文件、内存块甚至因特网(参见第15章)进行读写。可以创建新的输入和输出对象类型(通过从InputStream和OutputStream继承)。向一个本来预期为收到字串的方法传递一个对象时,由于Java已限制了“自动类型转换”,所以会自动调用toString()方法。而我们可以重新定义这个toString(),扩展一个数据流能接纳的对象种类。
在IO数据流库的联机文档和设计过程中,仍有些问题没有解决。比如当我们打开一个文件以便输出时,完全可以指定一旦有人试图覆盖该文件就“掷”出一个违例——有的编程系统允许我们自行指定想打开一个输出文件,但唯一的前提是它尚不存在。但在Java中,似乎必须用一个File对象来判断某个文件是否存在,因为假如将其作为FileOutputStream或者FileWriter打开,那么肯定会被覆盖。若同时指定文件和目录路径,File类设计上的一个缺陷就会暴露出来,因为它会说“不要试图在单个类里做太多的事情”!
IO流库易使我们混淆一些概念。它确实能做许多事情,而且也可以移植。但假如假如事先没有吃透装饰器方案的概念,那么所有的设计都多少带有一点盲目性质。所以不管学它还是教它,都要特别花一些功夫才行。而且它并不完整:没有提供对输出格式化的支持,而其他几乎所有语言的IO包都提供了这方面的支持(这一点没有在Java 1.1里得以纠正,它完全错失了改变库设计方案的机会,反而增添了更特殊的一些情况,使复杂程度进一步提高)。Java 1.1转到那些尚未替换的IO库,而不是增加新库。而且库的设计人员似乎没有很好地指出哪些特性是不赞成的,哪些是首选的,造成库设计中经常都会出现一些的反对消息。
然而,一旦掌握了装饰器方案,并开始在一些较为灵活的环境使用库,就会认识到这种设计优点。