题意:有N个女孩要与N个男孩玩配对游戏.每个女孩有一个可选男孩的集合(即该女孩可以选自己集合中的任意一个男孩作为该轮的搭档).然后从第一轮开始,每个女孩都要和一个不同的男孩配对.如果第一轮N个女孩都配对成功,那么就开始第二轮配对,女孩依然从自己的备选男孩集合中选择,但是不能选那些已经被该女孩在前几轮选择中选过的男孩了(比如i女孩在第一轮选了j男孩,那么i在第二轮就不能选j男孩了). 问你游戏最多能进行多少轮?
思路:建图:
源点s为0,汇点t为2*n+1.女孩编号1到n,男孩编号n+1到2*n. 假设我们当前二分尝试的轮数为K(即能够进行K轮匹配),首先如果女孩i可能选择男孩j,那么就有边(i, j+n, 1).且源点到每个女孩i有边(s,i,K),每个男孩j到汇点t有边(j+n,t,K).如果最大流==K*n,那么就表示可以进行最少K轮匹配.对于女生之间有好友关系的,可以用并查集维护,或者是传递闭包,两个我都用了一下..时间一样..注意的是只合并女生
证明转网上的
证:如果满流,那么每个女生肯定选择了K个不同的男孩,每个男孩肯定被K个不同的女孩选择了(因为一个女孩到一个男孩边容量只为1,所以该女孩最多只能选该男孩一次).
那么上面这样就能保证这个游戏可以进行K轮吗?可以的,假设当前图的流量为0,说明任何女孩都没选男孩. 你可以想象假如此时从S到所有女孩有流量1(虽然容量是K,但是目前我们只放出1流量)流出,那么这些流量肯定会汇集到t(因为最大流为K*n,而我们此时只不过n流量).这个汇集的过程就是第一轮女孩选择了各自不同男孩的结果. 现在从S到所有女孩又有流量1流出(即第二轮开始了),这些流量肯定又经过了n个男孩汇集到t点了 且 如果上一轮i女孩的流量走到j男孩,这一轮i女孩的流量肯定不走j男孩了(因为i女孩到j男孩的边只有1容量).
综上所述,只要最大流==K*n,那么就能进行K轮.(如果能进行K轮配对,是不是最大流也一定==K*n呢?这个也是一定的,也是按照上面的模型过程模拟即可.它们互为充要条件)
#include <cstdio> #include <queue> #include <cstring> #include <iostream> #include <cstdlib> #include <algorithm> #include <vector> #include <map> #include <string> #include <set> #include <ctime> #include <cmath> #include <cctype> using namespace std; #define maxn 250 #define INF 1<<29 #define LL long long int cas=1,T; struct Edge { int from,to,cap,flow; Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){} }; int n,m; struct Dinic { // int n,m; int s,t; vector<Edge>edges; //边数的两倍 vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号 bool vis[maxn]; //BFS使用 int d[maxn]; //从起点到i的距离 int cur[maxn]; //当前弧下标 void init() { for (int i=0;i<=n*2+1;i++) G[i].clear(); edges.clear(); } void AddEdge(int from,int to,int cap) { edges.push_back(Edge(from,to,cap,0)); edges.push_back(Edge(to,from,0,0)); //反向弧 int mm=edges.size(); G[from].push_back(mm-2); G[to].push_back(mm-1); } bool BFS() { memset(vis,0,sizeof(vis)); queue<int>q; q.push(s); d[s]=0; vis[s]=1; while (!q.empty()) { int x = q.front();q.pop(); for (int i = 0;i<G[x].size();i++) { Edge &e = edges[G[x][i]]; if (!vis[e.to] && e.cap > e.flow) { vis[e.to]=1; d[e.to] = d[x]+1; q.push(e.to); } } } return vis[t]; } int DFS(int x,int a) { if (x==t || a==0) return a; int flow = 0,f; for(int &i=cur[x];i<G[x].size();i++) { Edge &e = edges[G[x][i]]; if (d[x]+1 == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0) { e.flow+=f; edges[G[x][i]^1].flow-=f; flow+=f; a-=f; if (a==0) break; } } return flow; } int Maxflow(int s,int t) { this->s=s; this->t=t; int flow = 0; while (BFS()) { memset(cur,0,sizeof(cur)); flow+=DFS(s,INF); } return flow; } }dc; int pre[maxn]; int dis[maxn][maxn]; int Find(int x) { return pre[x]==-1?x:pre[x]=Find(pre[x]); } bool solve(int k) { dc.init(); for (int i = 1;i<=n;i++) { dc.AddEdge(0,i,k); dc.AddEdge(n+i,n*2+1,k); for (int j = 1;j<=n;j++) if (dis[i][j]) dc.AddEdge(i,j+n,1); } return dc.Maxflow(0,n*2+1)==k*n; } int main() { scanf("%d",&T); while (T--) { int f; memset(dis,0,sizeof(dis)); memset(pre,-1,sizeof(pre)); scanf("%d%d%d",&n,&m,&f); for (int i = 1;i<=m;i++) { int u,v; scanf("%d%d",&u,&v); dis[u][v]=1; } for (int i = 1;i<=f;i++) { int u,v; scanf("%d%d",&u,&v); int uu = Find(u); int vv = Find(v); if (uu!=vv) pre[uu]=vv; } for (int i = 1;i<=n;i++) for (int j = i+1;j<=n;j++) if (Find(i)==Find(j)) for (int k=1;k<=n;k++) { dis[i][k]=dis[j][k]=(dis[i][k] || dis[j][k]); } int l = 0; int r = 100; while (l<=r) { int mid = (l+r)/2; if (solve(mid)) l = mid+1; else r=mid-1; } printf("%d\n",r); } } /*没有用并查集....时间一样...*/ /* #include <cstdio> #include <queue> #include <cstring> #include <iostream> #include <cstdlib> #include <algorithm> #include <vector> #include <map> #include <string> #include <set> #include <ctime> #include <cmath> #include <cctype> using namespace std; #define maxn 250 #define INF 1<<29 #define LL long long int cas=1,T; struct Edge { int from,to,cap,flow; Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){} }; int n,m; struct Dinic { // int n,m; int s,t; vector<Edge>edges; //边数的两倍 vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号 bool vis[maxn]; //BFS使用 int d[maxn]; //从起点到i的距离 int cur[maxn]; //当前弧下标 void init() { for (int i=0;i<=n*2+1;i++) G[i].clear(); edges.clear(); } void AddEdge(int from,int to,int cap) { edges.push_back(Edge(from,to,cap,0)); edges.push_back(Edge(to,from,0,0)); //反向弧 int mm=edges.size(); G[from].push_back(mm-2); G[to].push_back(mm-1); } bool BFS() { memset(vis,0,sizeof(vis)); queue<int>q; q.push(s); d[s]=0; vis[s]=1; while (!q.empty()) { int x = q.front();q.pop(); for (int i = 0;i<G[x].size();i++) { Edge &e = edges[G[x][i]]; if (!vis[e.to] && e.cap > e.flow) { vis[e.to]=1; d[e.to] = d[x]+1; q.push(e.to); } } } return vis[t]; } int DFS(int x,int a) { if (x==t || a==0) return a; int flow = 0,f; for(int &i=cur[x];i<G[x].size();i++) { Edge &e = edges[G[x][i]]; if (d[x]+1 == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0) { e.flow+=f; edges[G[x][i]^1].flow-=f; flow+=f; a-=f; if (a==0) break; } } return flow; } int Maxflow(int s,int t) { this->s=s; this->t=t; int flow = 0; while (BFS()) { memset(cur,0,sizeof(cur)); flow+=DFS(s,INF); } return flow; } }dc; int dis[maxn][maxn]; bool solve(int k) { dc.init(); for (int i = 1;i<=n;i++) { dc.AddEdge(0,i,k); dc.AddEdge(n+i,n*2+1,k); for (int j = 1;j<=n;j++) if (dis[i][j]) dc.AddEdge(i,j+n,1); } return dc.Maxflow(0,n*2+1)==k*n; } int main() { scanf("%d",&T); while (T--) { int f; memset(dis,0,sizeof(dis)); memset(pre,-1,sizeof(pre)); scanf("%d%d%d",&n,&m,&f); for (int i = 1;i<=m;i++) { int u,v; scanf("%d%d",&u,&v); dis[u][v]=1; } for (int i = 1;i<=f;i++) { int u,v; scanf("%d%d",&u,&v); for (int j = 1;j<=n;j++) { dis[u][j]=dis[v][j]=(dis[u][j] || dis[v][j]); } } int l = 0; int r = 100; while (l<=r) { int mid = (l+r)/2; if (solve(mid)) l = mid+1; else r=mid-1; } printf("%d\n",r); } }*/