第1行:一个数N,表示正整数的数量。(1 <= N <= 1000) 第2 - N + 1行:每行1个数(2 <= S[i] <= 10^9)
输出共N行,每行为 Yes 或 No。
5 2 3 4 5 6
Yes Yes No Yes No
效率最低:
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; bool is_prime(int num) { int i; if(num==1) return false; if(num==2) return true; for(i=2;i*i<=num;i++) { if(num%i==0) return false; } return true; } int main() { int n,num; scanf("%d",&n); while(n--) { scanf("%d",&num); if(is_prime(num)) printf("Yes\n"); else printf("No\n"); } return 0; }
素数测试:
#include<cstdlib> #include<cstdio> int modularExponent(int a, int b, int n) { int ret = 1; for (; b; b >>= 1, a = (int) ((long long) a * a % n)) { if (b & 1) { ret = (int) ((long long) ret * a % n); } } return ret; } bool millerRabin(int n,int a) { if (n == 1 || (n != 2 && !(n % 2)) || (n != 3 && !(n % 3)) || (n != 5 && !(n % 5)) || (n != 7 && !(n % 7))) { return false; } int r = 0, s = n - 1, j; if(!(n%a)) return false; while(!(s&1)){ s >>= 1; r++; } long long k = modularExponent(a, s, n); if(k == 1) return true; for(j = 0; j < r; j++, k = k * k % n) if(k == n - 1) return true; return false; } bool miller_Rabin(int n)// { int a[]={2,3,5,7},i;//能通过测试的最小素数为 3215031751(此数超int) for(i=0;i<4;i++){ if(!millerRabin(n,a[i]))return false; } return true; } int main() { int n,x; scanf("%d",&n); while(n--){ scanf("%d",&x); printf("%s\n",miller_Rabin(x)?"Yes":"No"); } return 0; }
神人写的:
#include <stdio.h> #include <math.h> #define MAXP 31627 char flag[MAXP+1]; int prime[4000]; int count = 0; void init_ptbl() { int i, k, m; prime[count++] = 2; for( i = 3; i <= MAXP / 2; i += 2 ) { if( flag[i] == 1 ) continue; for( k = 2; ( m = i * k ) <= MAXP; ++k ) flag[m] = 1; } for( i = 3; i <= MAXP; i += 2 ) if( flag[i] == 0 ) prime[count++] = i; } int main() { int n, x, i, e; init_ptbl(); scanf( "%d", &n ); while( n-- ) { scanf( "%d", &x ); if( ( x & 1 ) == 0 ) { puts( x == 2 ? "Yes" : "No" ); continue; } e = (int)sqrt( x ) + 1; for( i = 1; prime[i] <= e; ++i ) if( x % prime[i] == 0 ) break; puts( prime[i] <= e ? "No" : "Yes" ); } return 0; }