Spark 运行与配置

Spark:0.9版本

集群配置 


spark-env.sh

export JAVA_HOME=
export SPARK_MASTER_IP=
export SPARK_WORKER_CORES=
export SPARK_WORKER_INSTANCES=
export SPARK_WORKER_MEMORY= // Q1:这里的memory与SPARK_MEM有什么区别呢: 这里是说一个worker node上可以用多少内存,下面那个是说启动的Application可以用多少内存
export SPARK_MASTER_PORT=
export SPARK_JAVA_OPTS="-verbose:gc -XX:-PrintGCDetails -XX:+PrintGCTimeStamps”  //最后的参数在新版本中已经修正删除


slaves
xx.xx.xx.2
xx.xx.xx.3
xx.xx.xx.4
xx.xx.xx.5


集群启动

.../sbin/start-all.sh

如果使用HDFS的话需要启动DFS即可

/xx/hadoop-xx.yy/bin/start-dfs.sh

附上几条dfs的命令

hadoop fs -tail /xxx/xx

hadoop fs -ls /xxx/xxx

shell运行

• MASTER=local[4] ADD_JARS=code.jar ./spark-shell   //如果是集群运行最好Master的书写完整,如果是local运行,可以省略,则默认是本地一个线程执行。需要依赖的外部jar包,如果没有可以不写ADD_JARS
• MASTER=spark://host:port
• 指定executor内存:export SPARK_MEM=25g    //这句话可以加在./spark-shell 这个文件中执行,就可以省略这一步了,根据源码显示,如果这里不指定的话,默认是512M

//控制台或者代码中指定,为第一优先级,其次是配置文件中的指定,最后就是默认的512M了


代码

第一部分使用来自sogou lab的数据集 http://www.sogou.com/labs/dl/q.html

数据格式为
访问时间\t用户ID\t[查询词]\t该URL在返回结果中的排名\t用户点击的顺序号\t用户点击的URL
其中,用户ID是根据用户使用浏览器访问搜索引擎时的Cookie信息自动赋值,即同一次使用浏览器输入的不同查询对应同一个用户ID。

20111230000005 57375476989eea12893c0c3811607bcf 奇艺高清 1 1 http://www.qiyi.com/
20111230000005 66c5bb7774e31d0a22278249b26bc83a 凡人修仙传 3 1 http://www.booksky.org/BookDetail.aspx?BookID=1050804&Level=1
20111230000007 b97920521c78de70ac38e3713f524b50 本本联盟 1 1 http://www.bblianmeng.com/
20111230000008 6961d0c97fe93701fc9c0d861d096cd9 华南师范大学图书馆 1 1 http://lib.scnu.edu.cn/
20111230000008 f2f5a21c764aebde1e8afcc2871e086f 在线代理 2 1 http://proxyie.cn/
20111230000009 96994a0480e7e1edcaef67b20d8816b7 伟大导演 1 1 http://movie.douban.com/review/1128960/


val data = sc.textFile("hdfs://xxxxxxx")

data.cache //这句话要在下次action的时候才会执行

data.count //计算有多少行数据


data.map(_.split('\t')(0)).filter(_<'20111230000009').count // (0)是访问数组的语法


data.map(_.split('\t')(3)).filter(_.toInt == 1).count


data.map(_.split('\t')).filter(_(0)<'20111230000009').filter(_(4).toInt == 1).count // (0)是访问数组的语法


data.map(_.split('\t')).filter(_(0)<'20111230000009').filter(_(2).contains("baidu")).count // (0)是访问数组的语法



IDE 运行

XML中主要配置spark core包的mvn 依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>chinahadoop</groupId>
    <artifactId>chinahadoop</artifactId>
    <version>1.0-SNAPSHOT</version>

    <repositories>
        <repository>
            <id>Akka repository</id>
            <url>http://repo.akka.io/releases</url>
        </repository>
    </repositories>

    <build>
        <sourceDirectory>src/main/scala/</sourceDirectory>
        <testSourceDirectory>src/test/scala/</testSourceDirectory>

        <plugins>
            <plugin>
                <groupId>org.scala-tools</groupId>
                <artifactId>maven-scala-plugin</artifactId>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
                <configuration>
                    <scalaVersion>2.10.3</scalaVersion>
                </configuration>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.2</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>

                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
                                    <resource>reference.conf</resource>
                                </transformer>

                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <manifestEntries>
                                        <Main-Class>cn.chinahadoop.???</Main-Class>
                                    </manifestEntries>
                                </transformer>

                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.10</artifactId>
            <version>0.9.0-incubating</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>1.2.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.10</artifactId>
            <version>0.9.0-incubating</version>
        </dependency>

    </dependencies>

</project>


Scala代码

package cn.chinahadoop.spark

import org.apache.spark.{SparkContext, SparkConf}
import scala.collection.mutable.ListBuffer
import org.apache.spark.SparkContext._

/**
 * Created by chenchao on 14-3-1.
 */
class Analysis {

}

object Analysis{

  def main(args : Array[String]){

    if(args.length != 3){
      println("Usage : java -jar code.jar dependency_jars file_location save_location")
      System.exit(0)
    }

    val jars = ListBuffer[String]()
    args(0).split(',').map(jars += _)

    val conf = new SparkConf()
    conf.setMaster("spark://server1:8888")
        .setSparkHome("/data/software/spark-0.9.0-incubating-bin-hadoop1")
        .setAppName("analysis")
        .setJars(jars)
        .set("spark.executor.memory","25g")

    val sc = new SparkContext(conf)
    val data = sc.textFile(args(1))

    data.cache

    println(data.count)

    data.filter(_.split(' ').length == 3).map(_.split(' ')(1)).map((_,1)).reduceByKey(_+_)
    .map(x => (x._2, x._1)).sortByKey(false).map( x => (x._2, x._1)).saveAsTextFile(args(2))
  }

}



你可能感兴趣的:(Spark 运行与配置)