题目链接:uva 1564 - Widget Factory
题目大意:n种零件,m次工作日程,零件序号从1到n,给出m次工作日程的信息,x,s,e,表示生产了x个零件,从星期s开始到星期e(有可能是多个星期),然后给出生产的x个零件的序号。求每个零件被生产需要多少天(保证在3到10天)
解题思路:因为不能确定每个工作日程具体生产了几天,所以对应列出的方程均为线性模方程(模7),所以在高斯消元的过程中遇到除法要转换成乘上逆元。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 305;
const int maxd = 7;
const char day[maxd][maxd] = {"MON", "TUE", "WED", "THU", "FRI", "SAT", "SUN"};
typedef long long ll;
typedef ll Mat[maxn][maxn];
int N, M;
Mat A;
int solve (char *s, char *e) {
int p = 0;
while (strcmp(s, day[p])) p++;
int q = p;
while (strcmp(e, day[q])) q = (q + 1) % maxd;
return (q - p + 8) % maxd;
}
void init () {
int n, x;
char s[maxn], e[maxn];
memset(A, 0, sizeof(A));
for (int i = 0; i < M; i++) {
scanf("%d%s%s", &n, s, e);
for (int j = 0; j < n; j++) {
scanf("%d", &x);
A[i][x-1] = (A[i][x-1] + 1) % maxd;
}
A[i][N] = solve(s, e);
}
}
ll pow_mod(ll x, int n, ll mod) {
ll ret = 1;
while (n) {
if (n&1)
ret = ret * x % mod;
x = x * x % mod;
n >>= 1;
}
return ret;
}
ll inv (ll k) {
return pow_mod(k, maxd-2, maxd);
}
int gauss_elimin (int n, int m) {
int i = 0, j = 0;
while (i < m && j < n) {
int r = i;
for (int k = i; k < m; k++) {
if (A[k][j]) {
r = k;
break;
}
}
if (r != i) {
for (int k = 0; k <= n; k++)
swap(A[i][k], A[r][k]);
}
if (A[i][j] == 0) {
j++;
continue;
}
for (int k = 0; k < m; k++) {
if (A[k][j] == 0 || i == k)
continue;
ll f = A[k][j] * inv(A[i][j]) % maxd;
for (int t = j; t <= n; t++)
A[k][t] = ((A[k][t] - f * A[i][t]) % maxd + maxd) % maxd;
}
i++;
}
for (int k = i; k < m; k++)
if (A[k][n])
return 0;
if (i < n)
return 2;
for (int k = 0; k < n; k++) {
A[k][n] = A[k][n] * inv(A[k][k]) % maxd;
if (A[k][n] < 3)
A[k][n] += maxd;
printf("%lld%c", A[k][n], k == n-1 ? '\n' : ' ');
}
return 1;
}
int main () {
while (~scanf("%d%d", &N, &M) && N) {
init();
int type = gauss_elimin(N, M);
if (type == 0)
printf("Inconsistent data.\n");
else if (type == 2)
printf("Multiple solutions.\n");
}
return 0;
}