1.1、定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)
1.2、算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
执行动画过程如下图
代码实现如下:
public class GraphByMatrix { public static final boolean UNDIRECTED_GRAPH = false;//无向图标志 public static final boolean DIRECTED_GRAPH = true;//有向图标志 public static final boolean ADJACENCY_MATRIX = true;//邻接矩阵实现 public static final boolean ADJACENCY_LIST = false;//邻接表实现 public static final int MAX_VALUE = Integer.MAX_VALUE; private boolean graphType; private boolean method; private int vertexSize; private int matrixMaxVertex; //存储所有顶点信息的一维数组 private Object[] vertexesArray; //存储图中顶点之间关联关系的二维数组,及边的关系 private int[][] edgesMatrix; // 记录第i个节点是否被访问过 private boolean[] visited; /** * @param graphType 图的类型:有向图/无向图 * @param method 图的实现方式:邻接矩阵/邻接表 */ public GraphByMatrix(boolean graphType, boolean method, int size) { this.graphType = graphType; this.method = method; this.vertexSize = 0; this.matrixMaxVertex = size; if (this.method) { visited = new boolean[matrixMaxVertex]; vertexesArray = new Object[matrixMaxVertex]; edgesMatrix = new int[matrixMaxVertex][matrixMaxVertex]; //对数组进行初始化,顶点间没有边关联的值为Integer类型的最大值 for (int row = 0; row < edgesMatrix.length; row++) { for (int column = 0; column < edgesMatrix.length; column++) { edgesMatrix[row][column] = MAX_VALUE; } } } } /********************最短路径****************************/ //计算一个顶点到其它一个顶点的最短距离 public void Dijkstra(Object obj) throws Exception { Dijkstra(getVertexIndex(obj)); } public void Dijkstra(int v0) { int[] dist = new int[matrixMaxVertex]; int[] prev = new int[matrixMaxVertex]; //初始化visited、dist和path for (int i = 0; i < vertexSize; i++) { //一开始假定取直达路径最短 dist[i] = edgesMatrix[v0][i]; visited[i] = false; //直达情况下的最后经由点就是出发点 if (i != v0 && dist[i] < MAX_VALUE) prev[i] = v0; else prev[i] = -1; //无直达路径 } //初始时源点v0∈visited集,表示v0 到v0的最短路径已经找到 visited[v0] = true; // 下来假设经由一个点中转到达其余各点,会近些,验证之 // 再假设经由两个点中转,会更近些,验证之,..... // 直到穷举完所有可能的中转点 int minDist; int v = 0; for (int i = 1; i < vertexSize; i++) { //挑一个距离最近经由点,下标装入 v minDist = MAX_VALUE; for (int j = 0; j < vertexSize; j++) { if ((!visited[j]) && dist[j] < minDist) { v = j; // 经由顶点j中转则距离更短 minDist = dist[j]; } } visited[v] = true; /*顶点v并入S,由v0到达v顶点的最短路径为min. 假定由v0到v,再由v直达其余各点,更新当前最后一个经由点及距离*/ for (int j = 0; j < vertexSize; j++) { if ((!visited[j]) && edgesMatrix[v][j] < MAX_VALUE) { if (minDist + edgesMatrix[v][j] <= dist[j]) { //如果多经由一个v点到达j点的 最短路径反而要短,就更新 dist[j] = minDist + edgesMatrix[v][j]; prev[j] = v; //经由点的序号 } } } } for (int i = 1; i < matrixMaxVertex; i++) { System.out.println("**" + vertexesArray[v0] + "-->" +vertexesArray[i] + " 的最短路径是:" + dist[i]); } } //获取顶点值在数组里对应的索引 private int getVertexIndex(Object obj) throws Exception { int index = -1; for (int i = 0; i < vertexSize; i++) { if (vertexesArray[i].equals(obj)) { index = i; break; } } if (index == -1) { throw new Exception("没有这个值!"); } return index; } /** * 单源最短路径算法,用于计算一个节点到其他!!所有节点!!的最短路径 */ public void Dijkstra2(int v0) { // LinkedList实现了Queue接口 FIFO Queue<Integer> queue = new LinkedList<Integer>(); for (int i = 0; i < vertexSize; i++) { visited[i] = false; } //这个循环是为了确保每个顶点都被遍历到 for (int i = 0; i < vertexSize; i++) { if (!visited[i]) { queue.add(i); visited[i] = true; while (!queue.isEmpty()) { int row = queue.remove(); System.out.print(vertexesArray[row] + "-->"); for (int k = getMin(row); k >= 0; k = getMin(row)) { if (!visited[k]) { queue.add(k); visited[k] = true; } } } } } } private int getMin( int row) { int minDist = MAX_VALUE; int index = 0; for (int j = 0; j < vertexSize; j++) { if ((!visited[j]) && edgesMatrix[row][j] < minDist) { minDist = edgesMatrix[row][j]; index = j; } } if (index == 0) { return -1; } return index; } public boolean addVertex(Object val) { assert (val != null); vertexesArray[vertexSize] = val; vertexSize++; return true; } public boolean addEdge(int vnum1, int vnum2, int weight) { assert (vnum1 >= 0 && vnum2 >= 0 && vnum1 != vnum2 && weight >= 0); //有向图 if (graphType) { edgesMatrix[vnum1][vnum2] = weight; } else { edgesMatrix[vnum1][vnum2] = weight; edgesMatrix[vnum2][vnum1] = weight; } return true; } }测试:
@Test public void testWeight() throws Exception { GraphByMatrix graph = new GraphByMatrix(Graph.UNDIRECTED_GRAPH, Graph.ADJACENCY_MATRIX, 6); graph.addVertex("1"); graph.addVertex("2"); graph.addVertex("3"); graph.addVertex("4"); graph.addVertex("5"); graph.addVertex("6"); graph.addEdge(0, 1,7); graph.addEdge(0, 2,9); graph.addEdge(0, 5,14); graph.addEdge(1, 3,15); graph.addEdge(1, 2,10); graph.addEdge(2, 3,11); graph.addEdge(2, 5,2); graph.addEdge(3, 4,6); graph.addEdge(4, 5,9); graph.Dijkstra(0); System.out.println(); graph.Dijkstra("1"); System.out.println(); graph.Dijkstra2(0); System.out.println(); }**1-->2 的最短路径是:7
**1-->6 的最短路径是:11
1-->2-->3-->6-->4-->5-->
1.定义概览
Floyd-Warshall算法(Floyd-Warshall algorithm)又称为插点法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
2.算法描述:
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
3).Floyd算法过程矩阵的计算----十字交叉法
方法:两条线,从左上角开始计算一直到右下角 如下所示
给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点
相应计算方法如下:
最后A3即为所求结果
代码如下: