二分寻找解的个数

1.HDU1496    Equations

 

Problem Description
Consider equations having the following form:

a*x1^2+b*x2^2+c*x3^2+d*x4^2=0
a, b, c, d are integers from the interval [-50,50] and any of them cannot be 0.

It is consider a solution a system ( x1,x2,x3,x4 ) that verifies the equation, xi is an integer from [-100,100] and xi != 0, any i ∈{1,2,3,4}.

Determine how many solutions satisfy the given equation.
 


 

Input
The input consists of several test cases. Each test case consists of a single line containing the 4 coefficients a, b, c, d, separated by one or more blanks.
End of file.
 


 

Output
For each test case, output a single line containing the number of the solutions.
 


 

Sample Input
   
   
   
   
1 2 3 -4 1 1 1 1
 


 

Sample Output
   
   
   
   
39088 0

 

先把前两个数的和的所有方案找出 最后二分寻找最后两个数的和

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;

const int maxn = 10010;

int k,a,b,c,d;

long long ans;

int s[maxn];

void init(){
    k=0;
    for(int i=1;i<=100;i++)
        for(int j=1;j<=100;j++)
            s[k++]=i*i*a+b*j*j;
}

void binary_search(int t){
    int l=0,r=k;
    while(l<r){
        int mid=(l+r)/2;
        if(s[mid]==t){
            ans++;
            for(int ss=mid-1;s[ss]==t&&ss>=1;ss--)
                if(s[ss]==t)
                    ans++;
            for(int ss=mid+1;s[ss]==t&&ss<k;ss++)
                if(s[ss]==t)
                    ans++;
            return;
        }
        if(t>s[mid])
            l=mid+1;
        else r=mid;
    }
}

int main()
{
    while(cin>>a>>b>>c>>d){
        init();
        ans = 0;
        if(a>0&&b>0&&c>0&&d>0){
            cout<<"0"<<endl;
            continue;
        }
        sort(s,s+k);
        for(int i=1;i<=100;i++){
            for(int j=1;j<=100;j++){
                int t=-(c*i*i+d*j*j);
                int l=0,r=k;
                binary_search(t);
            }
        }
        printf("%I64d\n",ans*16);
    }
    return 0;
}


UVA1152 4 Values whose Sum is 0

 

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.


The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.


For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

1

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5


Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

 

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int a[4010][4];
int num1[4001*4001];
int num2[4001*4001];
int main()
{
    int cas,n;
    scanf("%d",&cas);
    while(cas--){
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            for(int j=0;j<4;j++)
               scanf("%d",&a[i][j]);
        int cnt=0;
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                num1[cnt]=a[i][0]+a[j][1];
                num2[cnt]=a[i][2]+a[j][3];
                cnt++;
            }
        }
        int count=0;
        sort(num1,num1+cnt);
        sort(num2,num2+cnt);
        for(int i=0;i<cnt;i++){
            int l=0,r=cnt-1;
            while(l<=r)
            {
                int mid=(l+r)/2;
                if(num1[i]+num2[mid]==0)
                {
                     for(int j=mid;j>=0&&num2[j]==num2[mid];j--)
                         count++;
                     for(int j=mid+1;j<cnt&&num2[j]==num2[mid];j++)
                         count++;
                     break;
                }
                else if(num1[i]+num2[mid]<0)
                    l=mid+1;
                else r=mid-1;
            }
        }
        cout<<count<<endl;
        if(cas!=0)
            puts("");
    }
    return 0;
}

你可能感兴趣的:(二分寻找解的个数)