余星光 + 原创作品转载请注明出处 + 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000
一、准备工作
可以在实验楼中直接进行,实验环境是已经配好的;
或者在自己的Linux系统中配置环境,步骤如下:
+ sudo apt-get install qemu # install QEMU + sudo ln -s /usr/bin/qemu-system-i386 /usr/bin/qemu + wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.9.4.tar.xz # download [Linux Kernel 3.9.4 source code](https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.9.4.tar.xz) + wget https://raw.github.com/mengning/mykernel/master/mykernel_for_linux3.9.4sc.patch # download [mykernel_for_linux3.9.4sc.patch](https://raw.github.com/mengning/mykernel/master/mykernel_for_linux3.9.4sc.patch) + xz -d linux-3.9.4.tar.xz + tar -xvf linux-3.9.4.tar + cd linux-3.9.4 + patch -p1 < ../mykernel_for_linux3.9.4sc.patch + make allnoconfig + make + qemu -kernel arch/x86/boot/bzImage 从qemu窗口中您可以看到my_start_kernel在执行,同时my_timer_handler时钟中断处理程序周期性执行。 + cd mykernel 您可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c + 当前有一个CPU执行C代码的上下文环境,同时具有中断处理程序的上下文环境,我们初始化好了系统环境。 + 您只要在mymain.c基础上继续写进程描述PCB和进程链表管理等代码,在myinterrupt.c的基础上完成进程切换代码,一个可运行的小OS kernel就完成了。 + start to write your own OS kernel,enjoy it!
(1)从这里获取实验用的源代码,https://github.com/mengning/mykernel,获取mypcb.h、myinterrupt.c和mymain.c这三个文件;
(2)在虚拟机环境中,将这三个文件拷贝到mykernel目录下,即覆盖之前的myinterrupt.c和mymain.c,并添加mypcb.h文件;
(3)回到linux-3.9.4目录下,使用下面的命令编译、运行
#make allnoconfig #make #qemu -kernel arch/x86/boot/bzImage
运行效果如下:
三、源码分析
我们主要对mypcb.h、myinterrupt.c和mymain.c这三个文件进行分析。
mypcb.h
/* * linux/mykernel/mypcb.h * * Kernel internal PCB types * * Copyright (C) 2013 Mengning * */ #define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE 1024*8 /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; typedef struct PCB{ int pid; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ char stack[KERNEL_STACK_SIZE]; /* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; void my_schedule(void);其中,每个PCB对应如下图
然后是mymain.c
#include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].state = -1; task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ "pushl %1\n\t" /* push ebp */ "pushl %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to eip */ "popl %%ebp\n\t" : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } void my_process(void) { int i = 0; while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
下面对mymain.c中的源码来具体分析
初始化:
从第一个PCB,即task[0]开始执行:
执行上面的代码后,寄存器eip指向my_process函数,计算机开始执行该函数;在my_process函数中有一个死循环,一直打印进程的pid。
myinterrupt.c
/* * linux/mykernel/myinterrupt.c * * Kernel internal my_timer_handler * * Copyright (C) 2013 Mengning * */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */ void my_timer_handler(void) { #if 1 if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; #endif return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { /* switch to next process */ asm volatile( "pushl %%ebp\n\t" /* save ebp */ "movl %%esp,%0\n\t" /* save esp */ "movl %2,%%esp\n\t" /* restore esp */ "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" "ret\n\t" /* restore eip */ "1:\t" /* next process start here */ "popl %%ebp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); } else { next->state = 0; my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to new process */ asm volatile( "pushl %%ebp\n\t" /* save ebp */ "movl %%esp,%0\n\t" /* save esp */ "movl %2,%%esp\n\t" /* restore esp */ "movl %2,%%ebp\n\t" /* restore ebp */ "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" "ret\n\t" /* restore eip */ : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
当发生始终中断时,执行my_timer_handler函数,每次将全局变量time_count自加1,然后继续执行my_process函数、再中断,直到time_count%1000==0且全局变量my_need_sched!=0时,并打印一串字符,并将my_need_sched置为1,中断函数执行完后,返回到my_process函数,因为my_need_sched=1,开始执行my_schedule。
而对于my_schedule函数的图解如下:
即将执行的环境转移到下一个PCB,然后执行下一个PCB中的my_process函数,如此循环。
上面的代码就实现了一个简单的时间片轮转调度。
四、总结
通过上面的分析,我们知道操作系统支持多道程序的核心就是中断机制。