一个简单的时间片轮转多道程序内核代码分析

余星光 + 原创作品转载请注明出处 + 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000 


一、准备工作

可以在实验楼中直接进行,实验环境是已经配好的;

或者在自己的Linux系统中配置环境,步骤如下:

+ sudo apt-get install qemu # install QEMU 
+ sudo ln -s /usr/bin/qemu-system-i386 /usr/bin/qemu
+ wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.9.4.tar.xz # download [Linux Kernel 3.9.4 source code](https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.9.4.tar.xz)
+ wget https://raw.github.com/mengning/mykernel/master/mykernel_for_linux3.9.4sc.patch # download [mykernel_for_linux3.9.4sc.patch](https://raw.github.com/mengning/mykernel/master/mykernel_for_linux3.9.4sc.patch)
+ xz -d linux-3.9.4.tar.xz
+ tar -xvf linux-3.9.4.tar
+ cd linux-3.9.4
+ patch -p1 < ../mykernel_for_linux3.9.4sc.patch
+ make allnoconfig
+ make
+ qemu -kernel arch/x86/boot/bzImage 从qemu窗口中您可以看到my_start_kernel在执行,同时my_timer_handler时钟中断处理程序周期性执行。
+ cd mykernel 您可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c
+ 当前有一个CPU执行C代码的上下文环境,同时具有中断处理程序的上下文环境,我们初始化好了系统环境。
+ 您只要在mymain.c基础上继续写进程描述PCB和进程链表管理等代码,在myinterrupt.c的基础上完成进程切换代码,一个可运行的小OS kernel就完成了。
+ start to write your own OS kernel,enjoy it!


二、实验过程

(1)从这里获取实验用的源代码,https://github.com/mengning/mykernel,获取mypcb.h、myinterrupt.c和mymain.c这三个文件;

(2)在虚拟机环境中,将这三个文件拷贝到mykernel目录下,即覆盖之前的myinterrupt.c和mymain.c,并添加mypcb.h文件;

(3)回到linux-3.9.4目录下,使用下面的命令编译、运行

#make allnoconfig
#make
#qemu -kernel arch/x86/boot/bzImage


运行效果如下:



三、源码分析

我们主要对mypcb.h、myinterrupt.c和mymain.c这三个文件进行分析。

mypcb.h

/*
 *  linux/mykernel/mypcb.h
 *
 *  Kernel internal PCB types
 *
 *  Copyright (C) 2013  Mengning
 *
 */

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*8

/* CPU-specific state of this task */
struct Thread {
    unsigned long		ip;
    unsigned long		sp;
};

typedef struct PCB{
    int pid;
    volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
    char stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long	task_entry;
    struct PCB *next;
}tPCB;

void my_schedule(void);
其中,每个PCB对应如下图


然后是mymain.c

#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>


#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;

void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*fork more process */
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].state = -1;
        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
	asm volatile(
    	"movl %1,%%esp\n\t" 	/* set task[pid].thread.sp to esp */
    	"pushl %1\n\t" 	        /* push ebp */
    	"pushl %0\n\t" 	        /* push task[pid].thread.ip */
    	"ret\n\t" 	            /* pop task[pid].thread.ip to eip */
    	"popl %%ebp\n\t"
    	: 
    	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)	/* input c or d mean %ecx/%edx*/
	);
}   
void my_process(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
        	    my_schedule();
        	}
        	printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }     
    }
}


下面对mymain.c中的源码来具体分析

初始化:

一个简单的时间片轮转多道程序内核代码分析_第1张图片


创建一个环行的PCB:

一个简单的时间片轮转多道程序内核代码分析_第2张图片

从第一个PCB,即task[0]开始执行:


执行上面的代码后,寄存器eip指向my_process函数,计算机开始执行该函数;my_process函数中有一个死循环,一直打印进程的pid。


myinterrupt.c

/*
 *  linux/mykernel/myinterrupt.c
 *
 *  Kernel internal my_timer_handler
 *
 *  Copyright (C) 2013  Mengning
 *
 */
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
 * Called by timer interrupt.
 * it runs in the name of current running process,
 * so it use kernel stack of current running process
 */
void my_timer_handler(void)
{
#if 1
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    } 
    time_count ++ ;  
#endif
    return;  	
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL 
        || my_current_task->next == NULL)
    {
    	return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;
    prev = my_current_task;
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
    	/* switch to next process */
    	asm volatile(	
        	"pushl %%ebp\n\t" 	    /* save ebp */
        	"movl %%esp,%0\n\t" 	/* save esp */
        	"movl %2,%%esp\n\t"     /* restore  esp */
        	"movl $1f,%1\n\t"       /* save eip */	
        	"pushl %3\n\t" 
        	"ret\n\t" 	            /* restore  eip */
        	"1:\t"                  /* next process start here */
        	"popl %%ebp\n\t"
        	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        	: "m" (next->thread.sp),"m" (next->thread.ip)
    	); 
    	my_current_task = next; 
    	printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);   	
    }
    else
    {
        next->state = 0;
        my_current_task = next;
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
    	/* switch to new process */
    	asm volatile(	
        	"pushl %%ebp\n\t" 	    /* save ebp */
        	"movl %%esp,%0\n\t" 	/* save esp */
        	"movl %2,%%esp\n\t"     /* restore  esp */
        	"movl %2,%%ebp\n\t"     /* restore  ebp */
        	"movl $1f,%1\n\t"       /* save eip */	
        	"pushl %3\n\t" 
        	"ret\n\t" 	            /* restore  eip */
        	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
        	: "m" (next->thread.sp),"m" (next->thread.ip)
    	);          
    }   
    return;	
}

当发生始终中断时,执行my_timer_handler函数,每次将全局变量time_count自加1,然后继续执行my_process函数、再中断,直到time_count%1000==0且全局变量my_need_sched!=0时,并打印一串字符,并my_need_sched置为1,中断函数执行完后,返回到my_process函数,因为my_need_sched=1,开始执行my_schedule。

而对于my_schedule函数的图解如下:


即将执行的环境转移到下一个PCB,然后执行下一个PCB中的my_process函数,如此循环。

上面的代码就实现了一个简单的时间片轮转调度。


四、总结

通过上面的分析,我们知道操作系统支持多道程序的核心就是中断机制。



你可能感兴趣的:(linux,内核,代码分析)