hdu 4698 Counting(计数)

题目链接:hdu 4698 Counting

解题思路

考虑不可行的四元组,用所有方案数减掉。将x按照坐标排序,保证某些x满足时,对应的y不满足,累加求和。

代码

#include <cstdio>
#include <cstring>
#include <set>
#include <algorithm>

using namespace std;
typedef set<int>::iterator iter;
typedef long long ll;
const int maxn = 1005;
const int mod = 1e9 + 7;

int C(int x) { return 1LL * x * (x+1) / 2 % mod; }

struct Point {
    int x, y;
    bool operator < (const Point& u) const { return x < u.x; }
}P[maxn];

int N, M, K;
set<int> pos;

void add(int y, ll& s) {
    iter it = pos.upper_bound(y);
    iter rf = it;
    it--;

    if (*it == y) return;

    s = (s - C(*rf - *it - 1) + mod) % mod;
    s = (s + C(*rf - y - 1) + C(y - *it - 1)) % mod;
    pos.insert(y);
}

ll solve(int s) {
    pos.clear();
    pos.insert(0);
    pos.insert(M+1);

    ll ret = 0, sum = C(M), l = P[s].x - P[s-1].x;

    add(P[s].y, sum);
    for (int i = s+1; i <= K; i++) {
        if (P[i].x != P[i-1].x) {
            int r = P[i].x - P[i-1].x;
            ret = (ret + sum * l % mod * r % mod) % mod;
        }
        add(P[i].y, sum);
    }
    int r = N + 1 - P[K].x;
    ret = (ret + sum * l % mod * r % mod) % mod;
    return ret;
}

int main () {
    while (scanf("%d%d%d", &N, &M, &K) == 3) {
        for (int i = 1; i <= K; i++) scanf("%d%d", &P[i].x, &P[i].y);
        P[0].x = 0, P[K+1].x = N+1;
        sort(P + 1, P + K + 1);

        ll ans = 0;
        for (int i = 1; i <= K + 1; i++)
            ans = (ans + C(P[i].x - P[i-1].x - 1)) % mod;
        ans = ans * C(M) % mod;

        for (int i = 1; i <= K; i++)
            ans = (ans + solve(i)) % mod;
        ans = (1LL * C(N) * C(M) % mod - ans + mod) % mod;
        printf("%lld\n", ans);
    }
    return 0;
}

你可能感兴趣的:(hdu 4698 Counting(计数))