IP/RAP/ICMP/IGMP

来自:http://www.cnblogs.com/dubingsky/archive/2009/06/17/1505029.html

不可靠和无连接概念

      不可靠(unreliable):IP不能保证数据报能成功地到达目的地。 IP仅提供最好的传输服务。 如果发生某种错误时,比如:路由器暂时用完了缓冲区,IP会丢弃该数据报,然后发送ICMP消息报给信源端。 任何要求的可靠性必须由上层来提供(如TCP)。 
      无连接(connectionless):IP不维护任何关于后续数据报的状态信息。 每个数据报的处理是相互独立的。如果一信源向相同的信宿发送两个连续的数据报(先是A,然后是B),每个数据报都是独立地进行路由选择,可能选择不同的路线,因此B可能在A到达之前先到达。

IP协议

      IP数据报格式:
 
      TTL(time-to-live)生存时间字段:限制了Packet经过的最多路由器数。 TTL的初始值由源主机设置(通常为32或64),经过一个处理它的路由器,值减1。 当该字段的值为0时,数据报就被丢弃,并发送ICMP报文通知源主机。

IP路由选择

      特殊情况,目的主机和主机直连,那主机根本不用寻找路由,直接把数据传递过去(靠ARP协议)。

      一般情况,主机通过若干个路由器(router)和目的主机连接,如下方式来处理:

如果IP数据包的TTL(生命周期)已到,就抛弃此包。
搜索路由表,优先匹配主机,如果能找到和IP地址完全一致的目标主机,则将该包发向目标主机。
                  如果匹配主机失败,则匹配同子网的路由器,这需要“子网掩码”的协助。如果找到路由器,则将该包发向路由器。 
                  如果匹配同子网路由器失败,则匹配同网号路由器,如果找到路由器,则将该包发向路由器。
如果以上都失败了,就搜索默认路由,如果默认路由存在,则发向默认路由。
如果都失败了,就丢掉这个包。

      路由表中的信息: 
            1)目的IP地址 
            2)下一站路由器(next-hop router)的IP地址 
            3)标志(其中一个标志指明目的I P地址是网络地址还是主机地址,另一个标志指明下一站路由器是否为真正的下一站路由器,还是一个直接相连的接口) 
            4)为数据报的传输指定一个网络接口

 

Code

这样,IP选路的方式就可以更加具体化了。如下

首先用IP地址来匹配那些带H标志的DestinationIP地址。
如果1失败就匹配那些网络地址。
如果2失败就发送到Default网关
顺便提一下那个GenMask(还记得子网掩码么),它指定了目的地址的子网号,例如第一条的子网就是11。

ICMP的IP重定向报文和路由发现报文
      当IP包在某一个地方转向的时候,都回给发送IP报的源主机一个ICMP重定向报文,而源主机就可以利用这个信息来更新自己的路由表,这样,随着网络通信的逐渐增多,路由表也就越来越完备,数据转发的速度也会越来越快。我们需要注意的是:

1)重定向报文只能由路由器发出。
2)重定向报文为主机所用,而不是为路由器所用。
3)在主机引导的时候,一般会发送在网内广播一个路由请求的ICMP报文,而多个路由器则会回应一个路由通告报文。而且,路由其本身不定期的在网络内发布路由通告报文,这样,根据这些报文,每一个主机都会有机会建立自己的路由表而实现网络通信。路由器在一份通告报文中可以通告多个地址,并且给出每一个地址的优先等级,这个优先等级是该IP作为默认路由的等级,至于怎么算的就不深究了。

路由器一般会在450-600秒的时间间隔内发布一次通告,而一个给定的通告报文的寿命是30分钟。而主机在引导的时候会每三秒发送一次请求报文,一旦接受到一个有效的通告报文,就停止发送请求报文。

动态选路协议
      前面的选路方法叫做静态选路,简要地说就是在配置接口的时候,以默认的方式生成路由表项。并通过route来增加表项,或者通过ICMP报文来更新表项(通常在默认方式出错的情况下)。 而如果上诉三种方法都不能满足,那么我们就使用动态选路。

1)动态选路协议只是使用在路由器之间,相邻路由器之间互相通信。

2)系统(路由选择程序)选择比较合适的路由放到核心路由表中,然后系统就可以根据这个核心路由表找到最合适的网路。也就是说,动态选路是在系统核心网络外部进行的,它只是用一些选路的策略影响路由表,而不会影响到最后通过路由表选择路由的那一部分。选路协议有一大类常用的叫做内部网关协议(IGP),而在IGP中,RIP就是其中最重要的协议。一种新的IGP协议叫做开放最短路经优先(OSPF)协议,其意在取代RIP。另一种最早用在网路骨干网上的IGP协议--HELLO,现在已经不用了。

如今,任何支持动态选路的路由器都必须同时支持OSPF和RIP,还可以选择性的支持其他的IGP协议。 

 

工作流程总结:

 

子网寻址 

     不是把IP地址看成由单纯的网络号+主机号组成,而是把主机号再分成一个子网号和一个主机号。

例如,这里有一个B类网络地址(140.252),在剩下的16 bit中,8 bit用于子网号,8 bit用于主机号,格式如下图所示。 这样就允许有254个子网,每个子网可以有254台主机。
 
子网掩码 

      除了IP地址以外,主机还需要知道有多少比特用于子网号及多少比特用于主机号。 这是在引导过程中通过子网掩码来确定的。 
      这个掩码是一个32 bit的值,其中值为1的比特留给网络号和子网号,为0的比特留给主机号。
下图是两种不同的子网掩码格式:

给定IP地址和子网掩码以后,主机就可以确定IP数据报的目的地址是: 
      (1)本子网上的主机; 
      (2)本网络中其他子网中的主机; 
      (3)其他网络上的主机。
如果知道本机的IP地址,那么就知道它是否为A类、B类或C类地址(从IP地址的高位可以得知),也就知道网络号和子网号之间的分界线。 而根据子网掩码就可知道子网号与主机号之间的分界线。

假设我们的主机地址是140.252.1.1(一个B类地址),而子网掩码为255.255.255.0(其中8 bit为子网号,8 bit为主机号)。 
      1)如果目的IP地址是140.252.4.5,那么我们就知道B类网络号是相同的(140.252),但是子网号是不同的(1和4)。 
      2)如果目的IP地址是140.252.1.22,那么B类网络号还是一样的(140.252),而且子网号也是一样的(1),但是主机号是不同的。 
      3)如果目的IP地址是192.43.235.6(一个C类地址),那么网络号是不同的,因而进一步的比较就不用再进行了。
给定两个IP地址和子网掩码后, IP路由选择功能一直进行这样的比较。

7个特殊的IP地址

      0表示所有的比特位全为0;-1表示所有的比特位全为1;netid、subnetid和hostid分别表示不为全0或全1的对应字段。 子网号栏为空表示该地址没有进行子网划分。
 

一个子网的例子
 

ifconfig/netstat 
      ifconfig用来查看和编辑系统的网络配置 
      netstat用来监控和显示网络接口设备的状态信息

IPv6
IP主要存在三个方面的问题,这是Internet在过去几年快速增长所造成的结果: 
      1)超过半数的B类地址已被分配 
      2)32bit的IP地址从长期的Internet增长角度看,是不够用的 
      3)当前的路由结构没有层次结构,属于平面型(flat)结构,每个网络都需要一个路由表目

目前IP协议的版本号是4(简称为IPv4),它的下一个版本就是IPv6。IPv6正处在不断发展和完善的过程中,它在不久的将来将取代目前被广泛使用的IPv4。

与IPV4相比,IPV6具有以下几个优势:
一,IPv6具有更大的地址空间。IPv4中规定IP地址长度为32,即有2^32-1(符号^表示升幂,下同)个地址;而IPv6中IP地址的长度为128,即有2^128-1个地址。
二,IPv6使用更小的路由表。IPv6的地址分配一开始就遵循聚类(Aggregation)的原则,这使得路由器能在路由表中用一条记录(Entry)表示一片子网,大大减小了路由器中路由表的长度,提高了路由器转发数据包的速度。
三,IPv6增加了增强的组播(Multicast)支持以及对流的支持(Flow Control),这使得网络上的多媒体应用有了长足发展的机会,为服务质量(QoS,Quality of Service)控制提供了良好的网络平台。
四,IPv6加入了对自动配置(Auto Configuration)的支持。这是对DHCP协议的改进和扩展,使得网络(尤其是局域网)的管理更加方便和快捷。
五,IPv6具有更高的安全性。在使用IPv6网络中用户可以对网络层的数据进行加密并对IP报文进行校验,极大的增强了网络的安全性。

 

2. ARP协议

1)ARP为IP地址到对应的硬件地址之间提供动态映射
 

2)ARP高效运行的关键是由于每个主机上都有一个ARP高速缓存  
      存放了最近Internet地址到硬件地址之间的映射记录。高速缓存中每一项的生存时间一般为20分钟,起始时间从被创建时开始算起。 
      我们可以用arp -a命令来检查ARP高速缓存。 

3)ARP的分组格式
      在以太网上解析IP地址时,ARP请求和应答分组的格式如图:
 

以太网报头中的前两个字段是以太网的源地址和目的地址。目的地址为全1的特殊地址是广播地址。电缆上的所有以太网接口都要接收广播的数据帧。

两个字节长的以太网帧类型表示后面数据的类型。对于ARP请求或应答来说,该字段的值为0x0806。形容词hardware(硬件)和protocol(协议)用来描述ARP分组中的各个字段。例如,一个ARP请求分组询问协议地址(这里是I P地址)对应的硬件地址(这里是以太网地址)。

硬件类型字段表示硬件地址的类型。它的值为1即表示以太网地址。

协议类型字段表示要映射的协议地址类型。它的值为0x0800即表示IP地址。它的值与包含IP数据报的以太网数据帧中的类型字段的值相同,这是有意设计的。

接下来的两个1字节的字段,硬件地址长度和协议地址长度分别指出硬件地址和协议地址的长度,以字节为单位。对于以太网上IP地址的ARP请求或应答来说,它们的值分别为6和4。

操作字段指出四种操作类型,它们是ARP请求(值为1)、ARP应答(值为2)、RARP请求(值为3)和RARP应答(值为4)。这个字段必需的,因为ARP请求和ARP应答的帧类型字段值是相同的。

接下来的四个字段是发送端的硬件地址(在本例中是以太网地址)、发送端的协议地址(IP地址)、目的端的硬件地址和目的端的协议地址。注意,这里有一些重复信息:在以太网的数据帧报头中和ARP请求数据帧中都有发送端的硬件地址。

对于一个ARP请求来说,除目的端硬件地址外的所有其他的字段都有填充值。当系统收到一份目的端为本机的ARP请求报文后,它就把硬件地址填进去,然后用两个目的端地址分别替换两个发送端地址,并把操作字段置为2,最后把它发送回去。

4)ARP代理
      如果ARP请求是从一个网络的主机发往另一个网络上的主机,那么连接这两个网络的路由器就可以回答该请求,这个过程称作委托ARP或ARP代理(Proxy ARP)。这样可以欺骗发起ARP请求的发送端,使它误以为路由器就是目的主机,而事实上目的主机是在路由器的“另一边”。路由器的功能相当于目的主机的代理,把分组从其他主机转发给它。

5)免费ARP
      看到的另一个ARP特性称作免费ARP(gratuitous ARP)。 它是指主机发送ARP查找自己的IP地址。 通常,它发生在系统引导期间进行接口配置的时候。


3.IMCP(Internet Control Message Protocol )协议

      Internet控制消息协议(RFC 792) 
      当传送IP数据包发生错误--比如主机不可达,路由不可达等等,ICMP协议将会把错误信息封包,然后传送回给主机。给主机一个处理错误的机会,这也就是为什么说建立在IP层以上的协议是可能做到安全的原因。ICMP数据包由8bit的错误类型和8bit的代码和16bit的校验和组成。而前 16bit就组成了ICMP所要传递的信息。

      尽管在大多数情况下,错误的包传送应该给出ICMP报文,但是在特殊情况下,是不产生ICMP错误报文的(防止产生ICMP报文的无限传播)。如下

ICMP差错报文不会产生ICMP差错报文(出IMCP查询报文)(防止IMCP的无限产生和传送)
目的地址是广播地址或多播地址的IP数据报。
作为链路层广播的数据报。
不是IP分片的第一片。
源地址不是单个主机的数据报。这就是说,源地址不能为零地址、环回地址、广播地 址或多播地址。

ICMP协议大致分为两类,一种是查询报文,一种是差错报文。其中查询报文有以下几种用途:

ping查询(不要告诉我你不知道ping程序)
子网掩码查询(用于无盘工作站在初始化自身的时候初始化子网掩码)
时间戳查询(可以用来同步时间)
而差错报文则产生在数据传送发生错误的时候。就不赘述了。

2.ICMP的应用--ping
ping可以说是ICMP的最著名的应用,当我们某一个网站上不去的时候。通常会ping一下这个网站。ping会回显出一些有用的信息。一般的信息如下:

Reply from 10.4.24.1: bytes=32 time<1ms TTL=255
Reply from 10.4.24.1: bytes=32 time<1ms TTL=255
Reply from 10.4.24.1: bytes=32 time<1ms TTL=255
Reply from 10.4.24.1: bytes=32 time<1ms TTL=255

Ping statistics for 10.4.24.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms

      ping这个单词源自声纳定位,而这个程序的作用也确实如此,它利用ICMP协议包来侦测另一个主机是否可达。原理是用类型码为0的ICMP发请求,受到请求的主机则用类型码为8的ICMP回应。ping程序来计算间隔时间,并计算有多少个包被送达。用户就可以判断网络大致的情况。我们可以看到, ping给出来了传送的时间和TTL的数据。ping还给我们一个看主机到目的主机的路由的机会。这是因为,ICMP的ping请求数据报在每经过一个路由器的时候,路由器都会把自己的ip放到该数据报中。而目的主机则会把这个ip列表复制到回应icmp数据包中发回给主机。但是,无论如何,ip头所能纪录的路由列表是非常的有限。如果要观察路由,我们还是需要使用更好的工具,就是要讲到的Traceroute(windows下面的名字叫做tracert)。

3.ICMP的应用--Traceroute
      Traceroute是用来侦测主机到目的主机之间所经路由情况的重要工具,也是最便利的工具。前面说到,尽管ping工具也可以进行侦测,但是,因为ip头的限制,ping不能完全的记录下所经过的路由器。所以Traceroute正好就填补了这个缺憾。

      Traceroute的原理是非常非常的有意思,它受到目的主机的IP后,首先给目的主机发送一个TTL=1(还记得TTL是什么吗?)的UDP(后面就 知道UDP是什么了)数据包,而经过的第一个路由器收到这个数据包以后,就自动把TTL减1,而TTL变为0以后,路由器就把这个包给抛弃了,并同时产生 一个主机不可达的ICMP数据报给主机。主机收到这个数据报以后再发一个TTL=2的UDP数据报给目的主机,然后刺激第二个路由器给主机发ICMP数据 报。如此往复直到到达目的主机。这样,traceroute就拿到了所有的路由器ip。从而避开了ip头只能记录有限路由IP的问题。

      有人要问,我怎么知道UDP到没到达目的主机呢?这就涉及一个技巧的问题,TCP和UDP协议有一个端口号定义,而普通的网络程序只监控少数的几个号码较小的端口,比如说80,比如说23,等等。而traceroute发送的是端口号>30000(真变态)的UDP报,所以到达目的主机的时候,目的主机只能发送一个端口不可达的ICMP数据报给主机。主机接到这个报告以后就知道,主机到了,所以,说Traceroute是一个骗子一点也不为过:)

 

4.IGMP (Internet Group Management Protocol )
      Internet组管理协议 
      因特网协议家族中的一个组播协议,用于IP主机向任一个直接相邻的路由器报告他们的组成员情况。 
      IGMP信息封装在IP报文中,其IP的协议号为2。 
      IGMP具有三种版本,即IGMP v1、v2和v3。 
      IGMPv1: 主机可以加入组播组。没有离开信息(leave messages)。路由器使用基于超时的机制去发现其成员不关注的组。 
      IGMPv2: 该协议包含了离开信息,允许迅速向路由协议报告组成员终止情况,这对高带宽组播组或易变型组播组成员而言是非常重要的。
I      GMPv3: 与以上两种协议相比,该协议的主要改动为:允许主机指定它要接收通信流量的主机对象。来自网络中其它主机的流量是被隔离的。IGMPv3 也支持主机阻止那些来自于非要求的主机发送的网络数据包。

单播,多播,广播的介绍
单播(unicast)
      对特定的主机进行数据传送。例如给某一个主机发送IP数据包。这时候,数据链路层给出的数据头里面是非常具体的目的地址,对于以太网来 说,就是网卡的MAC地址(不是FF-FF-FF-FF-FF-FF这样的地址)。现在的具有路由功能的主机应该可以将单播数据定向转发,而目的主机的网络接口则可以过滤掉和自己MAC地址不一致的数据。

广播(unicast)
      主机针对某一个网络上的所有主机发送数据包。这个网络可能是网络,可能是子网,还可能是所有的子网。如果是网络,例如A类网址的广播就是 netid.255.255.255,如果是子网,则是netid.netid.subnetid.255;如果是所有的子网(B类IP)则是则是 netid.netid.255.255。广播所用的MAC地址FF-FF-FF-FF-FF-FF。网络内所有的主机都会收到这个广播数据,网卡只要把 MAC地址为FF-FF-FF-FF-FF-FF的数据交给内核就可以了。一般说来ARP,或者路由协议RIP应该是以广播的形式播发的。

多播(multicast)
      可以说广播是多播的特例,多播就是给一组特定的主机(多播组)发送数据,这样,数据的播发范围会小一些(实际上播发的范围一点也没有变小),多播的MAC地址是最高字节的低位为一,例如01-00-00-00-00-00。多播组的地址是D类IP,规定是224.0.0.0-239.255.255.255。

      虽然多播比较特殊,但是究其原理,多播的数据还是要通过数据链路层进行MAC地址绑定然后进行发送。所以一个以太网卡在绑定了一个多播IP地址之后,必定还要绑定一个多播的MAC地址,才能使得其可以像单播那样工作。这个多播的IP和多播MAC地址有一个对应的算法,在书的p133到p134之间。可以看到 这个对应不是一一对应的,主机还是要对多播数据进行过滤。

      个人的看法:广播和多播的性质是一样的,路由器会把数据放到局域网里面,然后网卡对这些数据进行过滤,只拿到自己打算要的数据,比如自己感兴趣的多播数据,自己感兴趣的组播数据。当一个主机运行了一个处理某一个多播IP的进程的时候,这个进程会给网卡绑定一个虚拟的多播mac地址,并做出来一个多播ip。这样,网卡就会让带有这个多播mac地址的数据进来,从而实现通信,而那些没有监听这些数据的主机就会把这些数据过滤掉,换句话说,多播,是让主机的内核轻松了,而网卡,对不起,您就累点吧。

一些文章也印证了这种想法,最明显的就是局域网监听的原理、实现与防范

一些验证性实验
这些实验并不是很复杂,我们只是要ping一下一般的ip和一个广播地址。首先我ping一下自己所在的子网的某一台主机:

Reply from 192.168.11.1: bytes=32 time<1ms TTL=255
Reply from 192.168.11.1: bytes=32 time<1ms TTL=255
Reply from 192.168.11.1: bytes=32 time<1ms TTL=255
Reply from 192.168.11.1: bytes=32 time=1ms TTL=255

可以看到,机器返回的是一台主机的回应结果,进而推测,如果我ping一个广播地址呢?结果如下

Reply from 192.168.11.9: bytes=32 time=1ms TTL=255
Reply from 192.168.11.174: bytes=32 time<1ms TTL=64
Reply from 192.168.11.174: bytes=32 time<1ms TTL=64
Reply from 192.168.11.174: bytes=32 time<1ms TTL=64
Reply from 192.168.11.218: bytes=32 time<1ms TTL=64
Reply from 192.168.11.174: bytes=32 time<1ms TTL=64

可以看到,ping返回了一些随机的ip的结果,这些ip都是与主机在同一子网内的ip。我们可以看到,广播实际上是给处于子网内的所有ip发信。

再来一个多播的例子,但是要实现这个多播并不容易,因为我不知道网络内有多少个多播组,就只好利用几个特殊的多播地址来验证了。

      对于多播地址,有几个特殊的多播地址被占用,他们是

            224.0.0.1--该子网内所有的系统组。 
            224.0.0.2--该子网内所有的路由器。 
            224.0.1.1--网络实现协议NTP专用IP。 
            224.0.0.9--RIPv2专用IP
所以只要ping这几个IP,就应该能得到一些结果,比如说我ping 224.0.0.2。

Reply from 192.168.11.1: bytes=32 time<1ms TTL=255
Reply from 192.168.11.1: bytes=32 time<1ms TTL=255
Reply from 192.168.11.1: bytes=32 time<1ms TTL=255
Reply from 192.168.11.1: bytes=32 time<1ms TTL=255
Reply from 192.168.11.1: bytes=32 time<1ms TTL=255
Reply from 192.168.11.1: bytes=32 time<1ms TTL=255
Reply from 192.168.11.1: bytes=32 time<1ms TTL=255

我们可以看到,这回ping只返回了一个ip的回应。而这个就是我的网关的地址,这也验证了224.0.0.2是所有路由器的多播(组播)地址

IGMP的作用

      让其他所有需要知道自己处于哪个多播组的主机和路由器知道自己的状态。一般多播路由器根本不需要知道某一个多播组里面有多少个主机,而只要知道自己的子网内还有没有处于某个多播组的主机就可以了。只要某一个多播组还有一台主机,多播路由器就会把数据传输出去,这样,接受方就会通过网卡过滤功能来得到自己想要的数据。为了知道多播组的信息,多播路由器需要定时的发送IGMP查询,IGMP的格式可以看书,各个多播组里面的主机要根据查询来回复自己的状态。路由器来决定有几个多播组,自己要对某一个多播组发送什么样的数据。

这种查询回应数据报的TTL一般是1,而且就算是出错也不产生ICMP差错(没必要)。

另一篇文章:http://www.cppblog.com/aurain/archive/2008/06/07/52454.html

你可能感兴趣的:(IP/RAP/ICMP/IGMP)