http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=610
Count the Colors Time Limit: 2 Seconds Memory Limit: 65536 KB Painting some colored segments on a line, some previously painted segments may be covered by some the subsequent ones.Your task is counting the segments of different colors you can see at last.
Input
The first line of each data set contains exactly one integer n, 1 <= n <= 8000, equal to the number of colored segments.
Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:
x1 x2 c
x1 and x2 indicate the left endpoint and right endpoint of the segment, c indicates the color of the segment.
All the numbers are in the range [0, 8000], and they are all integers.
Input may contain several data set, process to the end of file.
Output
Each line of the output should contain a color index that can be seen from the top, following the count of the segments of this color, they should be printed according to the color index.
If some color can't be seen, you shouldn't print it.
Print a blank line after every dataset.
Sample Input
5
0 4 4
0 3 1
3 4 2
0 2 2
0 2 3
4
0 1 1
3 4 1
1 3 2
1 3 1
6
0 1 0
1 2 1
2 3 1
1 2 0
2 3 0
1 2 1
Sample Output
1 1
2 1
3 1
1 1
0 2
1 1
Segmentation Fault
|
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> #include <cstdlib> #include <limits> #include <queue> #include <stack> #include <vector> #include <map> using namespace std; #define N 80005 #define INF 0xfffffff #define PI acos (-1.0) #define EPS 1e-8 #define Lson rt<<1, l, tree[rt].mid () #define Rson rt<<1|1, tree[rt].mid ()+1, r struct node1 {int l, r, e;}post[N]; struct node2 { int l, r, color; int mid (){return (l + r) / 2;} }tree[N * 4]; int color[N], ans[N]; void build (int rt, int l, int r); void Insert (int rt, int l, int r, int e); void update (int rt); int main () { int n; while (~scanf ("%d", &n)) { for (int i=1; i<=n; i++) scanf ("%d%d%d", &post[i].l, &post[i].r, &post[i].e); build (1, 0, N-1); memset (color, -1, sizeof (color)); memset (ans, 0, sizeof (ans)); for (int i=n; i>0; i--) Insert (1, post[i].l+1, post[i].r, post[i].e); for (int i=0; i<N; i++) if (color[i] != -1 && (!i || color[i] != color[i-1])) ans[color[i]]++; for (int i=0; i<N; i++) if (ans[i]) printf ("%d %d\n", i, ans[i]); puts (""); } return 0; } void build (int rt, int l, int r) { tree[rt].l = l, tree[rt].r = r; tree[rt].color = 0; if (l == r) return; build (Lson), build (Rson); } void Insert (int rt, int l, int r, int e) { if (tree[rt].color == 1) return; if (!tree[rt].color && tree[rt].l == l && tree[rt].r == r) { tree[rt].color = 1; for (int i=l; i<=r; i++) color[i] = e; return; } else tree[rt].color = 2; if (r <= tree[rt].mid ()) Insert (rt<<1, l, r, e); else if (l > tree[rt].mid ()) Insert (rt<<1|1, l, r, e); else Insert (Lson, e), Insert (Rson, e); update (rt); } void update (int rt) { if (tree[rt].l != tree[rt].r) if (tree[rt<<1].color == 1 && tree[rt<<1|1].color == 1) tree[rt].color = 1; }