【NOIP2013模拟】七夕祭

Description

七夕节因牛郎织女的传说而被扣上了「情人节」的帽子。于是TYVJ今年举办了一次线下七夕祭。Vani同学今年成功邀请到了cl同学陪他来共度七夕,于是他们决定去TYVJ七夕祭游玩。

TYVJ七夕祭和11区的夏祭的形式很像。矩形的祭典会场由N排M列共计N×M个摊点组成。虽然摊点种类繁多,不过cl只对其中的一部分摊点感兴趣,比如章鱼烧、苹果糖、棉花糖、射的屋……什么的。Vani预先联系了七夕祭的负责人zhq,希望能够通过恰当地布置会场,使得各行中cl感兴趣的摊点数一样多,并且各列中cl感兴趣的摊点数也一样多。

不过zhq告诉Vani,摊点已经随意布置完毕了,如果想满足cl的要求,唯一的调整方式就是交换两个相邻的摊点。两个摊点相邻,当且仅当他们处在同一行或者同一列的相邻位置上。由于zhq率领的TYVJ开发小组成功地扭曲了空间,每一行或每一列的第一个位置和最后一个位置也算作相邻。现在Vani想知道他的两个要求最多能满足多少个。在此前提下,至少需要交换多少次摊点。

Input

第一行包含三个整数N和M和T。T表示cl对多少个摊点感兴趣。

接下来T行,每行两个整数x, y,表示cl对处在第x行第y列的摊点感兴趣。

Output

首先输出一个字符串。如果能满足Vani的全部两个要求,输出both;如果通过调整只能使得各行中cl感兴趣的摊点数一样多,输出row;如果只能使各列中cl感兴趣的摊点数一样多,输出column;如果均不能满足,输出impossible。

如果输出的字符串不是impossible, 接下来输出最小交换次数,与字符串之间用一个空格隔开。

Sample Input

样例输入1

2 3 4

1 3

2 1

2 2

2 3

样例输入2

3 3 3

1 3

2 2

2 3

Sample Output

样例输出1

row 1

样例输出2

both 2

Data Constraint

对于30% 的数据,N, M≤100。

对于70% 的数据,N, M≤1000。

对于100% 的数据,1≤N, M≤100000,0≤T≤min(NM, 100000),1≤x≤N,1≤y≤M。

题解:

题意

题目大意是说给你一副n行m列的图,图里面有T个点是某人喜欢的点,他希望,每行的点的分布个数都相等(Row的情况),或者是每列的点的分布个数都相等(colunm的情况),或者是每行每列的点分布个数都相等(both的情况)

方法

方法1:
暴力搜索。有多暴力就多暴力,有多血腥就多血腥,要相信骗分最神奇,暴力出奇迹
枚举从第 k 个位置开始(1<=k<=n),按照题目描述的情况交换目标位置,累计进答案。最后取最小值。
时间复杂度 O(n^2),预计得分 70 分。

方法2:

至于满分的方法,我们可以发现,要想每行的点的个数相同,n就必须得满足是T的约数,同理,m必须得满足是T的约数。否则就“impossible”。有了这个想法,思路就很清楚了。
我们可以设一个Row数组,表示每行离每行的目标答案(T/n)差多少,
同理,我们可以设一个Column数组,表示每列离每列的目标答案(T/n)差多少。

之后,就可以分类讨论了。

首先对于Row的情况,可以设一个前缀和Pre1数组。如果从第k个位置开始,那么第i堆和第i+1堆交换的次数就是|Prei-Prek|,总代价就是|Pre1-Prek|+|Pre2-Prek|+|Pre3-prek|+……+|Pren-Prek|,可以发现当sk是中位数时,很明显他的代价最小。于是就可以将前缀和进行排序,找出他的中位数mid,于是就可以记录答案了,ans=|prei-mid|.
至于前缀和的求法,就是Pre[i]=Pre[i-1]+Row[i];
前缀和是为了方便处理后面的东西。

同理对于Column的情况处理起来是相同的。

至于“both”就当然是把两个答案加起来了啦~~~~。

于是时间复杂度就很小了变成O(nlogn+mlogm)(最坏的both情况)。

期望得分100

Code

#include <cstdio>
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for (int i=a;i<=b;i++)
#define fd(i,a,b) for (int i=a;i>=b;i--)
#define N 100005

using namespace std;

int n,m,T;
int a[N],b[N],Row[N],Column[N],Pre1[N],Pre2[N];
long long ans=0;

int main()
{
    scanf("%d%d%d",&n,&m,&T);
    fo(i,1,T)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        Row[x]++;
        Column[y]++;    
    }
    if (T%n!=0 && T%m!=0)
    {
        printf("impossible");
        return 0;
    }
    if (T<n || T<m)
    {
        printf("impossible");
        return 0;
    }
    fo(i,1,n) Row[i]-=T/n;
    fo(i,1,m) Column[i]-=T/m;
    if (T%n==0)
    {
        fo(i,1,n) Pre1[i]=Pre1[i-1]+Row[i];
        sort(Pre1+1,Pre1+1+n);
        long long mid=Pre1[(n+1)/2];
        fo(i,1,n) ans+=abs(mid-Pre1[i]);
    }
    if (T%m==0)
    {
        fo(i,1,m) Pre2[i]=Pre2[i-1]+Column[i];
        sort(Pre2+1,Pre2+1+m);
        long long mid=Pre2[(m+1)/2];
        fo(i,1,m) ans+=abs(mid-Pre2[i]);
    }
    if (T%n==0 && T%m==0) printf("both %lld\n",ans);
    else if (T%n==0) printf("row %lld\n",ans);
    else if (T%m==0) printf("column %lld\n",ans);
    return 0;
}

你可能感兴趣的:(【NOIP2013模拟】七夕祭)